Krylov, N. and Bogolyubov, N. (1947). Introduction to non-
linear mechanics. Princeton Univ. Press, Princeton.
Kudrewicz, J. and Wasowicz, S. (2007). Equations of
Phase-Locked Loops: Dynamics on the Circle, Torus
and Cylinder, volume 59. World Scientific.
Kuznetsov, N., Kuznetsova, O., Leonov, G., and Vagait-
sev, V. (2013). Informatics in Control, Automation
and Robotics, Lecture Notes in Electrical Engineer-
ing, Volume 174, Part 4, chapter Analytical-numerical
localization of hidden attractor in electrical Chua’s cir-
cuit, pages 149–158. Springer.
Kuznetsov, N. V. and Leonov, G. A. (2005). On stabil-
ity by the first approximation for discrete systems.
In 2005 International Conference on Physics and
Control, PhysCon 2005, volume Proceedings Volume
2005, pages 596–599. IEEE.
Kuznetsov, N. V., Leonov, G. A., and Seledzhi, S. M.
(2011). Hidden oscillations in nonlinear con-
trol systems. IFAC Proceedings Volumes (IFAC-
PapersOnline), 18(1):2506–2510.
Kuznetsov, N. V., Leonov, G. A., and Vagaitsev, V. I. (2010).
Analytical-numerical method for attractor localization
of generalized Chua’s system. IFAC Proceedings Vol-
umes (IFAC-PapersOnline), 4(1):29–33.
Leonov, G. A. and Kuznetsov, N. V. (2007). Time-varying
linearization and the Perron effects. International
Journal of Bifurcation and Chaos, 17(4):1079–1107.
Leonov, G. A. and Kuznetsov, N. V. (2013). Hidden attrac-
tors in dynamical systems. From hidden oscillations
in Hilbert-Kolmogorov, Aizerman, and Kalman prob-
lems to hidden chaotic attractors in Chua circuits. In-
ternational Journal of Bifurcation and Chaos, 23(1).
art. no. 1330002.
Leonov, G. A., Kuznetsov, N. V., Kiseleva, M. A.,
Solovyeva, E. P., and Zaretskiy, A. M. (2014). Hidden
oscillations in mathematical model of drilling system
actuated by induction motor with a wound rotor. Non-
linear Dynamics, 77(1-2):277–288.
Leonov, G. A., Kuznetsov, N. V., and Vagaitsev, V. I. (2012).
Hidden attractor in smooth Chua systems. Physica D:
Nonlinear Phenomena, 241(18):1482–1486.
Lindsey, W. (1972). Synchronization systems in communi-
cation and control. Prentice-Hall, New Jersey.
Margaris, W. (2004). Theory of the Non-Linear Analog
Phase Locked Loop. Springer Verlag, New Jersey.
Mitropolsky, Y. and Bogolubov, N. (1961). Asymptotic
Methods in the Theory of Non-Linear Oscillations.
Gordon and Breach, New York.
Olson, M. (1975). False-lock detection in costas demodula-
tors. Aerospace and Electronic Systems, IEEE Trans-
actions on, AES-11(2):180–182.
Piqueira, J. R. C. and Monteiro, L. H. A. (2003). Con-
sidering second-harmonic terms in the operation of
the phase detector for second-order phase-locked
loop. IEEE Transactions On Circuits And Systems–
I, 50(6):805–809.
Samoilenko, A. and Petryshyn, R. (2004). Multifrequency
Oscillations of Nonlinear Systems. Mathematics and
Its Applications. Springer.
Sanders, J. A., Verhulst, F., and Murdock, J. (2007). Av-
eraging Methods in Nonlinear Dynamical Systems.
Springer.
Sarkar, B. C., Sarkar, S. S. D., and Banerjee, T. (2014).
Nonlinear dynamics of a class of symmetric lock
range DPLLs with an additional derivative control.
Signal Processing, 94:631 – 641.
Shirahama, H., Fukushima, K., Yoshida, N., and Taniguchi,
K. (1998). Intermittent chaos in a mutually coupled
pll’s system. Circuits and Systems I: Fundamen-
tal Theory and Applications, IEEE Transactions on,
45(10):1114–1117.
Simon, M. K. (1978). The false lock performance of costas
loops with hard-limited in-phase channel. Communi-
cations, IEEE Transactions on, 26(1):23–34.
Stensby, J. (1997). Phase-Locked Loops: Theory and Ap-
plications. Phase-locked Loops: Theory and Applica-
tions. Taylor & Francis.
Stensby, J. (2011). An exact formula for the half-plane pull-
in range of a PLL. Journal of the Franklin Institute,
348(4):671–684.
Suarez, A., Fernandez, E., Ramirez, F., and Sancho, S.
(2012). Stability and bifurcation analysis of self-
oscillating quasi-periodic regimes. IEEE Transactions
on microwave theory and techniques, 60(3):528–541.
Suarez, A. and Quere, R. (2003). Stability Analysis of Non-
linear Microwave Circuits. Artech House.
Thede, L. (2005). Practical analog and digital filter design.
Artech House.
Tranter, W., Bose, T., and Thamvichai, R. (2010). Ba-
sic Simulation Models of Phase Tracking Devices Us-
ing MATLAB. Synthesis lectures on communications.
Morgan & Claypool.
Vendelin, G., Pavio, A., and Rohde, U. (2005). Microwave
Circuit Design Using Linear and Nonlinear Tech-
niques. Wiley.
Wang, T.-C., Chiou, T.-Y., and Lall, S. (2008). Nonlinear
phase-locked loop design using semidefinite program-
ming. In 16th Mediterranean Conference on Control
and Automation, pages 1640–1645. IEEE.
Watada, K., Endo, T., and Seishi, H. (1998). Shilnikov
orbits in an autonomous third-order chaotic phase-
locked loop. IEEE transactions on circuits and
systems–I, 45(9):979–983.
Wiegand, C., Hedayat, C., and Hilleringmann, U. (2010).
Non-linear behaviour of charge-pump phase-locked
loops. Advances in Radio Science, 8:161–166.
Wu, N. (2002). Analog phaselock loop design using Popov
critereon. In Proceedings of the 2002 American Con-
trol Conference, volume 1, pages 16–18. IEEE.
Yoshimura, T., Iwade, S., Makino, H., and Matsuda, Y.
(2013). Analysis of pull-in range limit by charge
pump mismatch in a linear phase-locked loop. Cir-
cuits and Systems I: Regular Papers, IEEE Transac-
tions on, 60(4):896–907.
ICINCO2014-11thInternationalConferenceonInformaticsinControl,AutomationandRobotics
710