age registration. IEEE Trans. on Image Processing,
21(9):4190–4203.
de Cabrol, A., Bonnin, P. J., Hugel, V., Blazevic, P., and
Chetto, M. (2005). Video rate color region segmen-
tation for mobile robotic applications. Proc. SPIE,
5909:59091E–59091E–12.
de Cabrol, A., Bonnin, P. J., Hugel, V., Bouchefra, K., and
Blazevic, P. (2005). Temporally optimized edge seg-
mentation for mobile robotics applications. In Appli-
cations of Digital Image Processing XXVIII, volume
5909 of SPIE, pages 448–459.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In In Proc. of Fourth Alvey Vision
Conference, pages 147–151.
Hartley, R. I. and Zisserman, A. (2004). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition.
Huber, P., Wiley, J., and InterScience, W. (1981). Robust
statistics. Wiley New York.
Irani, M. and Anandan, P. (1998). A unified approach to
moving object detection in 2d and 3d scenes. IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MA-
CHINE INTELLIGENCE, 20.
Klose, S., Heise, P., and Knoll, A. (2013). Efficient compo-
sitional approaches for real-time robust direct visual
odometry from rgb-d data. In IROS, pages 1100–1106.
IEEE.
K.Poornima, R. (2012). A method to align images using
iamge segmentation. IJCSE, 2.
Ladikos, A., Benhimane, S., and Navab, N. (2007). A re-
altime tracking system combining template-based and
feature-based approaches. In IN VISAPP.
Lin, Y., Yu, Q., and Medioni, G. (2011). Efficient detection
and tracking of moving objects in geo-coordinates.
Mach. Vision Appl., 22(3):505–520.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–
110.
Malis, E. and Marchand, E. (2006). Experiments with ro-
bust estimation techniques in real-time robot vision.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, IROS’06, pages 223–228, Beijing, Chine.
Migliore, D., Rigamonti, R., Marzorati, D., Matteucci, M.,
and Sorrenti, D. G. (2009). Use a single camera for si-
multaneous localization and mapping with mobile ob-
ject tracking in dynamic environments.
Odobez, J. and Bouthemy, P. (1997). Separation of mov-
ing regions from background in an image sequence
acquired with a mobile camera. In Li, H., Sun, S., and
Derin, H., editors, Video Data Compression for Multi-
media Computing, chapter 8, pages 283–311. Kluwer
Academic Publisher.
Reilly, V., Idrees, H., and Shah, M. (2010). Detection
and tracking of large number of targets in wide area
surveillance. In Proceedings of the 11th European
Conference on Computer Vision Conference on Com-
puter Vision: Part III, ECCV’10, pages 186–199,
Berlin, Heidelberg. Springer-Verlag.
Richard Evans, E. T. (2007). Visual mti for uav systems.
4th EMRS DTC Technical Conference Edinburgh.
Rodrguez-Canosa, G. R., Thomas, S., del Cerro, J., Bar-
rientos, A., and MacDonald, B. (2012). A real-time
method to detect and track moving objects (datmo)
from unmanned aerial vehicles (uavs) using a single
camera. Remote Sensing, 4(4):1090–1111.
Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations
in digital picture processing. J. ACM, 13(4):471–494.
Smith, S. M. and Brady, J. M. (1995). Susan - a new ap-
proach to low level image processing. International
Journal of Computer Vision, 23:45–78.
yves Bouguet, J. (2000). Pyramidal implementation of the
lucas kanade feature tracker. Intel Corporation, Mi-
croprocessor Research Labs.
Zitov, B. and Flusser, J. (2003). Image registration methods:
a survey. Image and Vision Computing, 21:977–1000.
ARobustReal-timeImageAlgorithmforMovingTargetDetectionfromUnmannedAerialVehicles(UAV)
273