that by introducing the waiting time dedicated by a
pedestrian in the waiting area as a predictor of the lo-
gistic regression model, the overall predictive qual-
ity increases a 4%, leading to an accuracy of 93.10%,
which clearly validates the proposed methodology.
Future works will be focused on new experiments
with balanced data obtained from different locations
at urban environments. In addition, experimental
comparisons between manual and automatic selection
of several parameters will be performed to validate
the proposed automatic stereo-based pedestrian be-
havioural parameters collection method. Finally, a
more sophisticated probabilistic predictive approach
will be developed and validated to increase the effec-
tiveness of the infrastructure-based safety measure-
ments.
ACKNOWLEDGEMENTS
This work was supported by the Spanish Ministry of
Economy under Grant ONDA-FP TRA2011-27712-
C02-02.
REFERENCES
´
Alvarez, S., Llorca, D. F., and Sotelo, M. A. (2014). Hierar-
chical camera auto-calibration for traffic surveillance
systems. Expert Systems with Applications, 41:1532–
1542.
´
Alvarez, S., Sotelo, M. A., Llorca, D. F., Quintero, R., and
Marcos, O. (2012). Monocular vision-based target de-
tection on dynamic transport infrastructures. Lecture
Notes in Computer Science, 6927:576–583.
Das, S., Manski, C. F., and Manuszak, M. D. (2005). Walk
or wait? an empirical analysis of street crossing deci-
sions. Journal of Applied Econometrics, 20(4):529–
548.
EC (2012). Basic fact sheets 2012. mobility and trans-
port, road safety. site: http://ec.europa.eu/transport/
road
safety/specialist/statistics/index en.htm.
Favoreel, W. (2011). Pedestrian sensing for increased traf-
fic safety and efficiency at signalized intersections.
In 8th IEEE International Conference on Advanced
Video and Signal-Based Surveillance.
Ger´onimo, D. and L´opez, A. M. (2014). Vision-based
Pedestrian Protection Systems for Intelligent Vehicles.
Springer.
Kadali, B. R. and Vedagiri, P. (2013). Modelling pedestrian
road crossing behaviour under mixed traffic condition.
European Transport, 15(3).
Keller, C. G., Enzweiler, M., Rohrbach, M., D. F. Llorca,
C. S., and Gavrila, D. M. (2011). The benefits of dense
stereo for pedestrian detection. IEEE Transactions on
Intelligent Transportation Systems, 12(4):1096–1106.
Keller, C. G. and Gavrila, D. M. (2014). Will the pedestrian
cross? a study on pedestrian path prediction. IEEE
Transactions on Intelligent Transportation Systems. In
press.
Koh, P. P. and Wong, Y. D. (2014). Gap acceptance of viola-
tors at signalised pedestrian crossings. Accident Anal-
ysis and Prevention, 62:178–185.
Kohler, S., Goldhammer, M., Bauer, S., Zecha, S., Doll, K.,
Brunsmann, U., and Dietmayer, K. (2013). Station-
ary detection of the pedestrian’s intention at intersec-
tions. IEEE Intelligent Transportation Systems Mag-
azine, 5(4):87–99.
Llorca, D. F., Milan´es, V., Parra, I., Gavil´an, M., Daza,
I. G., P´erez, J., and Sotelo, M. A. (2011). Autonomous
pedestrian collision avoidance using a fuzzy steering
controller. IEEE Transactions on Intelligent Trans-
portation Systems, 12(2):390–401.
Llorca, D. F., Sotelo, M. A., Hell´ın, A. M., Gavil´an, M.,
Daza, I. G., and Lorente, A. G. (2012). Stereo regions-
of-interest selection for pedestrian protection: a sur-
vey. Transportation Research Part C, 25:226–237.
Milanes, V., Llorca, D. F., Villagr´a, J., P´erez, J., Parra, I.,
Gonz´alez, C., and Sotelo, M. A. (2012). Vision-based
active safety system for automatic stopping. Expert
Systems with Applications, 39(12):11234–11242.
Nedevschi, S., Bota, S., and Tomiuc, C. (2009). Stereo-
based pedestrian detection for collision-avoidance ap-
plications. IEEE Transactions on Intelligent Trans-
portation Systems, 10(3):380–391.
Parra, I., Llorca, D. F., Sotelo, M. A., Bergasa, L. M.,
de Toro, P. R., Nuevo, J., Ocana, M., and Garc´ıa-
Garrido., M. A. (2007). Combination of feature ex-
traction methods for svm pedestrian detection. IEEE
Transactions on Intelligent Transportation Systems,
8(2):292–307.
Quintero, R., Almeida, J., Llorca, D. F., and Sotelo, M. A.
(2014). Pedestrian path prediction using body lan-
guage traits. In IV2014, IEEE Intelligent Vehicle Sym-
posium.
Schmidt, S. and Farber, B. (2009). Pedestrians at the kerb
- recognising the action intentions of humans. Trans-
portation Research Part F, 12(4):300–310.
Weimer, D., Kohler, S., Hellert, C., Doll, K., Brunsmann,
U., and Krzikalla, R. (2011). Gpu architecture for sta-
tionary multisensor pedestrian detection at smart in-
tersections. In IV2011, IEEE Intelligent Vehicle Sym-
posium.
Stereo-basedPedestrianDetectioninCrosswalksforPedestrianBehaviouralModellingAssessment
109