the complementary information of the source images
successfully transferred to the fused image.
The men in the images that cannot be seen in
visible images are emphasized in fused images. In
the result of proposed method for image 2, the sign
board and the man can be more clearly perceived
than LP and SiDWT. Furthermore, the details of the
building are less affected in proposed method. For
image 1 and 3, details like leaf of trees were
noticeably transferred to fused images in the
proposed method.
Similarly, for the concealed weapon detection
images, proposed method produces remarkable
better visual results. Details of scene in visible
image are less affected; meanwhile, the gun can be
expressed in fused image. Result of the SiDWT
methods are more darkened from the others.
In Fig. 5, the proposed method, LP and SiDWT
are compared in terms of four quality metrics. In this
figure, there are four graphs for all metrics. In the
figure, the metric values are shown in vertical axis
and the images are illustrated in horizontal axis. For
SCD, FF and SD metrics, the proposed method has
superior performance as can be seen from the figure.
QE metric is a measure for transferred edge amount
from the source images. Consequently, any edge
information do not transferred causes worse QE
results. The proposed method optimise amount the
complementary information not directly edge
information. Thus, some redundant edges are
eliminated. Therefore in some images, the method
gives smaller QE metric values.
Table 1: Quantitative metric values of proposed method on enhanced night vision images.
SCD QE FF SD
I NR Mean Sd Mean Sd Mean Sd Mean Sd
1
4
1,6811 2,5E-05 0,4276 0,0002 4,6293 0,015
13,1426
0,0249
8
1,7089 5,6E-05 0,4420 0,0002
4,8687
0,02 13,0549 0,0311
16
1,7121
1,3E-04
0,4427
0,0019 4,3046 0,0924 12,6203 0,0598
2
4
1,8623 4,7E-06
0,7405
0,0002 5,8901 0,0088 32,6549 0,0265
8
1,8779 4,9E-05 0,7265 0,0009
6,0274
0,0493
33,2886
0,0557
16
1,8918
3,7E-05 0,7230 0,0012 5,9466 0,0262 32,8598 0,0664
3
4
1,6814 1,9E-04 0,6617 0,0056 5,0728 0,0403 24,7487 0,0683
8
1,7110 3,8E-04
0,6715
0,0066
5,1144
0,0494
24,8753
0,1143
16
1,7168
4,3E-04 0,6611 0,0068 5,0156 0,0547 24,7280 0,1393
4
4
1,3426 1,4E-04
0,5440
0,0001
5,9977
0,016 13,4117 0,0109
8
1,3960 4,1E-04 0,5137 0,0013 6,1987 0,0456
13,5703
0,0608
16
1,4516
2,6E-04 0,4951 0,0015 6,4637 0,032 13,3122 0,0731
Table 2: Quantitative metric values of proposed method on concealed weapon detection images.
SCD QE FF SD
I NR Mean Sd Mean Sd Mean Sd Mean Sd
5
4
1,8190 1,3E-04 0,7642 0,0004 7,2460 0,0038 21,8141 0,0041
8
1,8386 6,7E-05
0,7727
0,0007
7,2954
0,0089
21,8684
0,0086
16
1,8419
5,5E-04 0,7672 0,0024 7,1230 0,0236 21,5918 0,0353
6
4
1,7482 6,8E-05 0,6321 0,0029 5,6574 0,0334 15,5627 0,0991
8
1,7681 8,8E-05 0,6385 0,002 5,6954 0,019
16,3073
0,0727
16
1,7731
2,9E-04
0,6430
0,0037
5,7890
0,0407 16,2750 0,1086
7
4
1,5953 1,6E-04
0,4789
0,0024
6,0943
0,022
13,8252
0,0178
8
1,5959 3,2E-04 0,4597 0,0117 5,8943 0,051 13,5828 0,0876
16
1,5974
4,7E-04 0,4450 0,0219 5,8543 0,0987 13,3263 0,1569
8
4
1,9284 6,6E-07
0,6763
0,0001
7,8687
0,0058
18,4296
0,0088
8
1,9497 3,7E-06 0,6548 0,0001 7,6373 0,0025 18,0308 0,0044
16
1,9535
1,7E-05 0,6600 0,0004 7,5924 0,0061 17,8978 0,0093
ICINCO2014-11thInternationalConferenceonInformaticsinControl,AutomationandRobotics
722