REFERENCES
Bajracharya, M., Moghaddam, B., Howard, A., Brennan,
S., and Matthies, L. H. (2009). A fast stereo-based
system for detecting and tracking pedestrians from a
moving vehicle. Int. Journal of Robotics Research,
28(11-12):1466–1485.
Clemente, L., Davison, A., Reid, I., Neira, J., and Tard
´
os,
J. D. (2007). Mapping large loops with a single hand-
held camera. Proc. Robotics: Science and Systems
Conf.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. Int. Conf. on Computer
Vision & Pattern Recognition, 2:886–893.
Dissanayake, M. G., Newman, P., Clark, S., Durrant-
Whyte, H. F., and Csorba, M. (2001). A solution to the
simultaneous localization and map building (SLAM)
problem. Rob. & Automation, IEEE Tr. on, 17(3):229–
241.
Droeschel, D., May, S., Holz, D., Ploeger, P., and Behnke,
S. (2009). Robust ego-motion estimation with ToF
cameras. European Conf. on Mobile Robots, pages
187–192.
Ferreira, J. F., Lobo, J., Bessi
`
ere, P., Castelo-Branco, M.,
and Dias, J. (2013). A Bayesian framework for active
artificial perception. IEEE Trans. on Cybernetics (Part
B), 43(2):699–711.
Fischler, M. A. and Bolles, R. C. (1981). RANdom SAmple
Consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Comm. of the ACM, 24(6):381–395.
Grisetti, G., Stachniss, C., and Burgard, W. (2007).
Improved techniques for grid mapping with Rao-
Blackwellized particle filters. IEEE Trans. on
Robotics, 23:2007.
Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D.
(2010). RGB-D mapping: Using depth cameras for
dense 3D modeling of indoor environments. Experi-
mental Robotics, 79:477–491.
Keller, C. G., Enzweiler, M., Rohrbach, M., Fernan-
dez Llorca, D., Schnorr, C., and Gavrila, D. M. (2011).
The benefits of dense stereo for pedestrian detection.
ITS, IEEE Trans. on, 12(4):1096–1106.
Konolige, K. and Agrawal, M. (2008). FrameSLAM:
From bundle adjustment to real-time visual mapping.
Robotics, IEEE Trans. on, 24(5):1066–1077.
Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and
Burgard, W. (2011). g2o: A general framework for
graph optimization. ICRA, pages 3607–3613.
Levi, K. and Weiss, Y. (2004). Learning object detection
from a small number of examples: the importance of
good features. CVPR, pages 53–60.
Llorca, D., Sotelo, M., Hell
´
ın, A., Orellana, A., Gavilan,
M., Daza, I., and Lorente, A. (2012). Stereo regions-
of-interest selection for pedestrian protection: A sur-
vey. Transportation research part C: emerging tech-
nologies, 25:226–237.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int. Journal Computer Vision,
60(2):91–110.
May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E.,
N
¨
uchter, A., and Hertzberg, J. (2009). 3D mapping
with ToF cameras. Journal of Field Robotics, sp. is-
sue on 3D Mapping.
Menezes, P., Brethes, L., Lerasle, F., Danes, P., and Dias, J.
(2003). Visual tracking of silhouettes for human-robot
interaction. pages 971–976.
Michael Calonder, Vincent Lepetit, and Pascal Fua (2008).
Keypoint signatures for fast learning and recognition.
In European Conf. on Computer Vision.
Munaro, M., Basso, F., and Menegatti, E. (2012). Tracking
people within groups with RGB-D data. IROS, pages
2101–2107.
Portugal, D. and Rocha, R. P. (2013). Distributed multi-
robot patrol: A scalable and fault-tolerant framework.
Robotics & Auton. Syst., 61(12):1572–1587.
Premebida, C., Ludwig, O., and Nunes, U. (2009). Lidar
and vision-based pedestrian detection system. Journal
of Field Robotics, 26(9):696–711.
Prusak, A., Melnychuk, O., Roth, H., Schiller, I., and Koch,
R. (2008). Pose estimation and map building with a
time-of-flight camera for robot navigation. Int. Jour-
nal Intell. Syst. Technol. Appl., 5(3/4):355–364.
Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an
open-source robot operating system. ICRA Workshop
on Open Source Software.
Rocha, R. P., Portugal, D., Couceiro, M., Araujo, F.,
Menezes, P., and Lobo, J. (2013). The CHOPIN
project: Cooperation between Human and rObotic
teams in catastroPhic INcidents. SSRR, pages 1–4.
Rosten, E. and Drummond, T. (2006). Machine learning
for high-speed corner detection. In European Conf.
on Computer Vision, pages 430–443.
Rusu, R. and Cousins, S. (2011). 3D is here: Point Cloud
Library (PCL). ICRA, pages 1–4.
Satake, J. and Miura, J. (2009). Multiple-Person Tracking
for a Mobile Robot Using Stereo. MVA Conf., pages
273–277.
Soni, B. and Sowmya, A. (2013). Victim detection and
localisation in an urban disaster site. ROBIO, pages
2142–2147.
Spinello, L. and Arras, K. O. (2011). People detection in
RGB-D data. IROS, pages 3838–3843.
Triebel, R. and Burgard, W. (2005). Improving simultane-
ous localization and mapping in 3D using global con-
straints. AAAI, 20(3):1330.
Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A.
(2000). Bundle adjustment – a modern synthesis. Vi-
sion Algorithms: Theory and Practice, LNCS, pages
298–375.
ICINCO2014-11thInternationalConferenceonInformaticsinControl,AutomationandRobotics
474