Embodied Localization in Visually-guided Walk of Humanoid Robots

Hendry Ferreira Chame, Christine Chevallereau

2014

Abstract

Humanoid robots are conceived to resemble the body and comportment of the human beings. Among the behavior repertoire, the possibility of executing visually-guided tasks is crucial for individual adaptation and relies on the on-board sensory system. However, the research on walk and localization is far from conclusive. Given the difficulties in the processing of the visual feedback, some studies have treated the problem by placing external sensors on the environment; thus neglecting the corporal metaphor. Others, despite exploring on-board solutions; have relied on an extensive model of the environment, thus considering the system as an information processing unit, abstracted from a body. This work presents a methodology to achieve embodied localization to serve visually-guided walk. The solution leans on robust segmentation from monocular vision, ego-cylindrical localization, and minimal knowledge about stimuli in the environment.

References

  1. Allen, B. F., Picon, F., Dalibard, S., Magnenat-Thalmann, N., and Thalmann, D. (2012). Localizing a mobile robot with intrinsic noise. In 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 2012, pages 1-4.
  2. Anderson, M. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149(1):91-130.
  3. Besag, J. (1986). On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society. Series B (Methodological), 48(3):259-302.
  4. Bodiroza, S., Schillaci, G., and Hafner, V. (2011). Robot ego-sphere: An approach for saliency detection and attention manipulation in humanoid robots for intuitive interaction. In 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages 689-694.
  5. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38.
  6. Deng, H. and Clausi, D. (2004). Unsupervised image segmentation using a simple MRF model with a new implementation scheme. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, volume 2, pages 691-694 Vol.2.
  7. Dune, C., Herdt, A., Stasse, O., Wieber, P. B., Yokoi, K., and Yoshida, E. (2010). Cancelling the sway motion of dynamic walking in visual servoing. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3175-3180.
  8. Exner, D., Bruns, E., Kurz, D., Grundhofer, A., and Bimber, O. (2010). Fast and robust CAMShift tracking. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 9-16.
  9. Hoffmann, M. and Pfeifer, R. (2012). The implications of embodiment for behavior and cognition: animal and robotic case studies. CoRR, abs/1202.0440.
  10. Hornung, A., Wurm, K., and Bennewitz, M. (2010). Humanoid robot localization in complex indoor environments. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1690- 1695.
  11. Kato, Z., Pong, T.-C., and Chung-Mong Lee, J. (2001). Color image segmentation and parameter estimation in a markovian framework. Pattern Recognition Letters, 22(34):309-321.
  12. Legrand, L., Bordier, C., Lalande, A., Walker, P., Brunotte, F., and Quantin, C. (2002). Magnetic resonance image segmentation and heart motion tracking with an active mesh based system. In Computers in Cardiology, 2002, pages 177-180.
  13. Lewis M.A. and Simo L.S. (1999). Elegant stepping: A model of visually triggered gait adaptation. Connection Science, 11(3-4):331-344.
  14. Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th international joint conference on Artificial intelligence - Volume 2, IJCAI'81, pages 674-679, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
  15. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pages 281-297, Berkeley, Calif. University of California Press.
  16. Miall, R. C., Weir, D. J., Wolpert, D. M., and Stein, J. F. (1993). Is the cerebellum a smith predictor? Journal of motor behavior, 25(3):203-216. PMID: 12581990.
  17. Michel, P., Chestnutt, J., Kuffner, J., and Kanade, T. (2005). Vision-guided humanoid footstep planning for dynamic environments. In Proceedings of the IEEE-RAS Conference on Humanoid Robots (Humanoids'05), pages 13 - 18.
  18. Moughlbay, A., Cervera, E., and Martinet, P. (2013). Model based visual servoing tasks with an autonomous humanoid robot. In Lee, S., Yoon, K.-J., and Lee, J., editors, Frontiers of Intelligent Autonomous Systems, volume 466 of Studies in Computational Intelligence, pages 149-162. Springer Berlin Heidelberg.
  19. Pretto, A., Menegatti, E., Bennewitz, M., Burgard, W., and Pagello, E. (2009). A visual odometry framework robust to motion blur. In Robotics and Automation, 2009. ICRA 7809. IEEE International Conference on, pages 2250-2257.
  20. Robert Cupec, G. S. (2005). Vision-guided walking in a structured indoor scenario. Automatika, 46(12):49- 57.
  21. Shapiro, L. (2007). The embodied cognition research programme. Philosophy Compass, 2(2):338-346.
Download


Paper Citation


in Harvard Style

Ferreira Chame H. and Chevallereau C. (2014). Embodied Localization in Visually-guided Walk of Humanoid Robots . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 165-174. DOI: 10.5220/0005063001650174


in Bibtex Style

@conference{icinco14,
author={Hendry Ferreira Chame and Christine Chevallereau},
title={Embodied Localization in Visually-guided Walk of Humanoid Robots},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={165-174},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005063001650174},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Embodied Localization in Visually-guided Walk of Humanoid Robots
SN - 978-989-758-040-6
AU - Ferreira Chame H.
AU - Chevallereau C.
PY - 2014
SP - 165
EP - 174
DO - 10.5220/0005063001650174