Real-time Local Stereo Matching Using Edge Sensitive AdaptiveWindows

Maarten Dumont, Patrik Goorts, Steven Maesen, Philippe Bekaert, Gauthier Lafruit

2014

Abstract

This paper presents a novel aggregation window method for stereo matching, by combining the disparity hypothesis costs of multiple pixels in a local region more efficiently for increased hypothesis confidence. We propose two adaptive windows per pixel region, one following the horizontal edges in the image, the other the vertical edges. Their combination defines the final aggregation window shape that rigorously follows all object edges, yielding better disparity estimations with at least 0.5 dB gain over similar methods in literature, especially around occluded areas. Also, a qualitative improvement is observed with smooth disparity maps, respecting sharp object edges. Finally, these shape-adaptive aggregation windows are represented by a single quadruple per pixel, thus supporting an efficient GPU implementation with negligible overhead.

References

  1. Astrachan, O. (2003). Bubble sort: an archaeological algorithmic analysis. ACM SIGCSE Bulletin, 35(1):1-5.
  2. Davis, J., Ramamoorthi, R., and Rusinkiewicz, S. (2003). Spacetime stereo: A unifying framework for depth from triangulation. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2, pages II-359. IEEE.
  3. Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2007a). High-speed dense stereo via directional center-biased support windows on programmable graphics hardware. In Proceedings of 3DTV-CON: The True Vision Capture, Transmission and Display of 3D Video, Kos, Greece.
  4. Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2007b). Real-time stereo using a truncated separable laplacian kernel approximation on programmable graphics hardware. In Proceedings of International Conference on Multimedia and Expo, pages 1946-1949, Beijing, China.
  5. Papadakis, N. and Caselles, V. (2010). Multi-label depth estimation for graph cuts stereo problems. Journal of Mathematical Imaging and Vision, 38(1):70-82.
  6. Richardt, C., Orr, D., Davies, I., Criminisi, A., and Dodgson, N. A. (2010). Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid. In Computer Vision-ECCV 2010, pages 510-523. Springer.
  7. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1):7-42.
  8. Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), volume 1, pages 195-202. IEEE.
  9. Wang, L., Liao, M., Gong, M., Yang, R., and Nister, D. (2006). High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pages 798-805. IEEE.
  10. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., and Nister, D. (2006). Real-time global stereo matching using hierarchical belief propagation. In BMVC, volume 6, pages 989-998.
  11. Zhang, K., Lu, J., and Lafruit, G. (2009a). Cross-based local stereo matching using orthogonal integral images. Circuits and Systems for Video Technology, IEEE Transactions on, 19(7):1073-1079.
  12. Zhang, K., Lu, J., Lafruit, G., Lauwereins, R., and Van Gool, L. (2009b). Real-time accurate stereo with bitwise fast voting on cuda. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 794-800. IEEE.
  13. Zitnick, C. L. and Kang, S. B. (2007). Stereo for imagebased rendering using image over-segmentation. International Journal of Computer Vision, 75(1):49-65.
Download


Paper Citation


in Harvard Style

Dumont M., Goorts P., Maesen S., Bekaert P. and Lafruit G. (2014). Real-time Local Stereo Matching Using Edge Sensitive AdaptiveWindows . In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014) ISBN 978-989-758-046-8, pages 117-126. DOI: 10.5220/0005065301170126


in Bibtex Style

@conference{sigmap14,
author={Maarten Dumont and Patrik Goorts and Steven Maesen and Philippe Bekaert and Gauthier Lafruit},
title={Real-time Local Stereo Matching Using Edge Sensitive AdaptiveWindows},
booktitle={Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)},
year={2014},
pages={117-126},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005065301170126},
isbn={978-989-758-046-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)
TI - Real-time Local Stereo Matching Using Edge Sensitive AdaptiveWindows
SN - 978-989-758-046-8
AU - Dumont M.
AU - Goorts P.
AU - Maesen S.
AU - Bekaert P.
AU - Lafruit G.
PY - 2014
SP - 117
EP - 126
DO - 10.5220/0005065301170126