Detailed Modeling and Calibration of a Time-of-Flight Camera

Christoph Hertzberg, Udo Frese

2014

Abstract

In this paper we propose a physically motivated sensor model of Time-of-Flight cameras. We provide methods to calibrate our proposed model and compensate all modeled effects. This enables us to reliably detect and filter out inconsistent measurements and to record high dynamic range (HDR) images. We believe that HDR images have a significant benefit especially for mapping narrow-spaced environments as in urban search and rescue. We provide methods to invert our model in real-time and gain significantly higher precision than using the vendor-provided sensor driver. In contrast to previously published purely phenomenological calibration methods our model is physically motivated and thus better captures the structure of the different effects involved.

References

  1. Castaneda, V., Mateus, D., and Navab, N. (2011). SLAM combining ToF and high-resolution cameras. In Applications of Computer Vision (WACV), 2011 IEEE Workshop on, pages 672-678.
  2. Fuchs, S. and Hirzinger, G. (2008). Extrinsic and depth calibration of ToF-cameras. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-6.
  3. Fuchs, S. and May, S. (2008). Calibration and registration for precise surface reconstruction with time-offlight cameras. Int. J. Intell. Syst. Technol. Appl., 5(3/4):274-284.
  4. Hertzberg, C., Wagner, R., Frese, U., and Schröder, L. (2013). Integrating generic sensor fusion algorithms with sound state representation through encapsulation of manifolds. Information Fusion, 14(1):57-77.
  5. Jimenez, D., Pizarro, D., Mazo, M., and Palazuelos, S. (2012). Modelling and correction of multipath interference in time of flight cameras. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 893-900.
  6. Kahlmann, T., Remendino, F., and Ingensand, H. (2006). Calibration for increased accuracy of the range imaging camera SwissRanger. In TM Proceedings of the ISPRS Com. V Symposium.
  7. Lange, R. (2000). 3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology. PhD thesis, University of Siegen.
  8. Lindner, M. and Kolb, A. (2006). Lateral and depth calibration of PMD-distance sensors. In Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., and Malzbender, T., editors, Advances in Visual Computing, volume 4292 of Lecture Notes in Computer Science, pages 524-533. Springer Berlin Heidelberg.
  9. May, S., Fuchs, S., Droeschel, D., Holz, D., and Nüchter, A. (2009). Robust 3D-mapping with time-of-flight cameras. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS'09, pages 1673-1678, Piscataway, NJ, USA. IEEE Press.
  10. Möller, T., Kraft, H., Frey, J., Albrecht, M., and Lange, R. (2005). Robust 3d measurement with pmd sensors. In In: Proceedings of the 1st Range Imaging Research Day at ETH, pages 3-906467.
  11. Mure-Dubois, J. and Hügli, H. (2007). Optimized scattering compensation for time-of-flight camera. Proc. SPIE, 6762:67620H-67620H-10.
  12. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. W. (2011). KinectFusion: Realtime dense surface mapping and tracking. In ISMAR, pages 127-136.
  13. OpenCV (2014). OpenCV. http://opencv.org.
  14. PMDtechnologies (2012). pmd[vision] CamBoard nano. http://www.pmdtec.com/products_services/ reference_design.php. last checked 2014-01-10.
  15. Sabov, A. and Krüger, J. (2010). Identification and correction of flying pixels in range camera data. In Proceedings of the 24th Spring Conference on Computer Graphics, SCCG 7808, pages 135-142, New York, NY, USA. ACM.
  16. Weingarten, J., Gruener, G., and Siegwart, R. (2004). A state-of-the-art 3D sensor for robot navigation. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages 2155-2160 vol.3.
Download


Paper Citation


in Harvard Style

Hertzberg C. and Frese U. (2014). Detailed Modeling and Calibration of a Time-of-Flight Camera . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 568-579. DOI: 10.5220/0005067205680579


in Bibtex Style

@conference{icinco14,
author={Christoph Hertzberg and Udo Frese},
title={Detailed Modeling and Calibration of a Time-of-Flight Camera},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={568-579},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005067205680579},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Detailed Modeling and Calibration of a Time-of-Flight Camera
SN - 978-989-758-039-0
AU - Hertzberg C.
AU - Frese U.
PY - 2014
SP - 568
EP - 579
DO - 10.5220/0005067205680579