are presented in real environment. Obtained results
in both simulations and real time applications are
acceptable. Future work will focus on the
improvement the navigation strategy using more
intelligence in transition phase, and the use of more
accurate localization system.
REFERENCES
Haddad, M., Chettibi, T., HANCHI, S. LEHTIHET, H.E
A random-profile approach for trajectory planning of
wheeled mobile robots. European journal of
Mechanics-A/Solids, Vol.26 (3), 2007, pp 519–540.
Souici, A., Rezine, H., Learning Goal Seeking and
Obstacle Avoidance using the FQL Algorithm, in
Proc. World Cong. on Engineering and Computer
Science, 2007, San Francisco, USA.
Nemra, A., Rezine, H., Genetic Reinforcement Learning
Algorithms for On-line Fuzzy Inference System
Tuning, Application to Mobile Robotic. Robotics
Automation and Control, Pavla Pecherkova, Miroslav
Flidr and Jindrich Dunik (Ed.), ISBN: 978-953-7619-
18-3, 2008, InTech.
Guechi, E., Lauber, J., Dambrine, M., Klančar G., Blažič,
S., PDC control design for non-holonomic wheeled
mobile robots with delayed outputs. J. Intell. Robotics
Syst. 60(3-4), 395–414, 2010.
Lee-Johnson, C., Carnegie, D., Applications of an
Adaptive Hierarchical Mobile Robot Navigation
System. In Proc. of the Australasian Conf. on Robotics
and Automation, 2007, Australia.
Durand, B., Proposition d’une architecture de contrôle
adaptative pour la tolérance aux fautes. Ph.D.
dissertation, Montpelier II Univ., France, 2012.
Chen, C., GREY, D., System Based Reactive Navigation
Of Mobile Robots Using Reinforcement Learning.
International Journal of Innovative Computing,
Information and Control, Volume 6, Number 2,
February 2010.
Morette, N., Contribution à la Navigation de robots
mobiles : approche par modèle direct et commande
prédictive. Ph.D. dissertation, Orléans Univ., France,
2009.
Haddad, M. Khalil, W. and Lehtihet, H. E., Trajectory
Planning of Unicycle Mobile Robots with a
Trapezoidal-Velocity Constraint. IEEE Transactions
on Robotics,DOI:10.1109/TRO (2010), 2062090.
Balkcom, D., MASON, M., Extremal trajectories for
bounded velocity mobile robots t. Proc. of IEEE Int.
Conf. on Robotics & Automation, 2002.
Labakhua, L., NUNES, U., RODRIGUIES, Smooth
Trajectory Planning for Fully Automated Passenger
Vehicles-Spline and Clothoid based Methods and its
Simulation. In Proc. of the Int. Conf. on Informatics in
Control, Automation and Robotics (ICINCO), pp. 89-
96. 2006.
Hentschel, M., and al., Deterministic path planning and
navigation for an autonomous fork lift truck. 6th IFAC
Symposium on Intelligent Autonomous Vehicles (IAV
2007).
Qin, B., Soh Y. C., Xie M., and Wang D., Optimal
trajectory generation for wheeled mobile robot”. In
Proc. Of 5th International Conference on Computer
Integrated Manufacturing, pp. 434-444. 2000.
Aydin S., Temeltas, H., a novel approach to smooth
trajectory planning of a mobile robot. IEEE Int
Workshop on Advanced Motion Control, pp 472-477,
2002.
Blažič, S., A novel trajectory-tracking control law for
wheeled mobile robots. Robotics and Autonomous
Systems 59, 2011, 1001-1007.
Levant, A., Sliding order and sliding accuracy in sliding
mode control, International Journal of Control,
6(58):1247_1263, 1993.
Hamerlain, F., Achour, K., Floquet, T., Perruquetti, W.
Higher order sliding mode control of wheeled mobile
robots in the presence of sliding effects. In 44 th IEEE
Conf. on Decision and Control, ECC’05, Séville,
2005.
Lucet, E., Grand, C., Sallé, D., and Bidaud, P. , Dynamic
control of the 6WD skid-steering mobile robot
RobuROC6 using sliding mode technique. ICRA 2009.
Lee, T., Lam, H., Leung, F., and Tam, P., a practical fuzzy
logic controller for the path tracking of wheeled
mobile robots. IEEE Control Systems Magazine. April
2003.
Nejat, H., Pishkenari, A., Mahboobib, S., Alasty, A.,
Optimum synthesis of fuzzy logic controller for
trajectory tracking by differential evolution. Scientia
Iranica B (2011) 18 (2), 261–267.
Ye, C., Wang, D., Novel behaviour fusion method for the
navigation of mobile robots. Proceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics, Nashville, TN, 2001, pp. 3526-3531.
Silas, F. Alves, R., Joao, M. & al, (2011), Conceptual
Bases of Robot Navigation Modeling, Control and
Applications, Advances in Robot Navigation, Prof.
Alejandra Barrera (Ed), ISBN: 978-953-307-346-0,
InTech.
Adouane, L., Hybrid and Safe Control Architecture for
Mobile Robot Navigation, 9th Conference on
Autonomous Robot Systems and Competitions –
Robotica’09, Castelo Branco, Portugal, 2009.
Simpson, J., Jacobsen, C., and Jadud, M., Mobile Robot
Control The Subsumption Architecture and occam-pi,
Communicating Process Architectures, IOS Press,
2006.
Tian, F., Ge, S., Zhu, H., A Navigation control strategy
with hybrid architecture for rescue robot, Proc. of
IEEE Int. Conf. on Intelligent Computing and
Intelligent Systems (ICIS10) Xiamen, China, 2010 ,
pp: 675 – 680 volume 1.
Vuković, N., Miljković, Z., New Hybrid Control
Architecture for Intelligent Mobile Robot Navigation
in a Manufacturing Environment, FME Transactions,
2009, 37, 9-18.
Garcia, E., Gonzalez, P., Hybrid deliberative/reactive
control of a scanning system for landmine detection,
ICINCO2014-11thInternationalConferenceonInformaticsinControl,AutomationandRobotics
520