path estimates. We have shown how the improve-
ment of fiber directional estimates can benefit the
particle filtering tracking process. Moreover, by de-
coupling the two stages, statistical directional esti-
mation and probabilistic fiber tracking, the proposed
methodology is well-suited to support a wide range
of methods for ODF reconstruction. The methodol-
ogy provides a better account of white matter path-
ways in regions with complex fiber configuration than
streamline-oriented approaches. However, compar-
ing results of in vivo fiber tracking is a difficult task
in general. In the future, we intend to test the pro-
posed methodology for performing human brain con-
nectivity analysis. Connectivity networks may pro-
vide alternative validation tools for quantitative com-
parisons.
REFERENCES
Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S.,
and Parker, D. L. (2001). Analysis of Partial Vol-
ume Effects in Diffusion-Tensor MRI. Magnetic Res-
onance in Medicine, 45:770–780.
Assaf, Y. and Basser, P. J. (2005). Composite hindered and
restricted model of diffusion (CHARMED) MR imag-
ing of the human brain. NeuroImage, 27(1):48–58.
Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005).
Clustering on the Unit Hypersphere using von Mises-
Fisher Distributions. Journal of Machine Learning
Research, 6:1345–1382.
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M.
F. S., and Woolrich, M. W. (2007). Probabilistic dif-
fusion tractography with multiple fibre orientations:
What can we gain? NeuroImage, 34(1):144–155.
Doucet, A., Godsill, S., and Andrieu, C. (2000). On se-
quential monte carlo sampling methods for bayesian
filtering. Statistics and Computing, 10(3):197–208.
Doucet, A. and Johansen, A. M. (2011). A Tutorial on
Particle Filtering and Smoothing: Fifteen years later.
In Crisan, D. and Rozovsky, B., editors, The Oxford
Handbook of Nonlinear Filtering. Oxford University
Press.
Ferreira da Silva, A. (2012). Facing the Challenge of Es-
timating Human Brain White Matter Pathways. In
Madani, K., Kacprzyk, J., and Filipe, J., editors, Proc.
of the 4th International Joint Conference on Compu-
tational Intelligence, pages 709–714. SciTePress.
Ferreira da Silva, A. (2013). Computational Representa-
tion of White Matter Fiber Orientations. International
Journal of Biomedical Imaging, 2013. Article ID
232143.
Hornik, K. and Gr¨un, B. (2012). Mixtures of von Mises
Fisher Distributions. R package version 0.1-0.
Liu, J. S. (2001). Monte Carlo Strategies in Scientific Com-
puting. Springer Series in Statistics. Springer.
Mardia, K. V. and Jupp, P. (2000). Directional Statistics.
John Wiley and Sons Ltd., 2nd edition.
Mori, S. and van Zijl, P. C. M. (2002). Fiber tracking:
principles and strategies - a technical review. NMR
in Biomedicine, 15:468–480.
Parker, G. and Alexander, D. (2003). Probabilistic Monte
Carlo based mapping of cerebral connections utilis-
ing whole-brain crossing fiber information. In Proc.
IPMI, pages 684–695.
Pontabry, J., Rousseau, F., Oubel, E., Studholme, C., Koob,
M., and Dietemann, J.-L. (2013). Probabilistic trac-
tography using Q-ball imaging and particle filtering:
Application to adult and in-utero fetal brain studies.
Medical Image Analysis, 17(3):297–310.
Rathi, Y., Michailovich, O., Shenton, M. E., and Bouix,
S. (2009). Directional Functions for Orientation
Distribution Estimation. Medical Image Analysis,
13(3):433–444.
Rowe, M. C., Zhang, H. G., Oxtoby, N., and Alexander,
D. C. (2013). Beyond crossing fibers: Tractography
exploiting sub-voxel fibre dispersion and neighbour-
hood structure. In IPMI, pages 402–413.
Schwartz, G. (1979). Estimating the dimension of a model.
Annals of Statistics, 6:461–464.
Seunarine, K. K. and Alexander, D. C. (2009). Multiple fi-
bres: beyond the diffusion tensor. In Johansen-Berg,
H. and Behrens, T. E. J., editors, Diffusion MRI: from
quantitative measurement to in vivo neuroanatomy,
pages 56–74. Academic Press.
Seunarine, K. K., Cook, P. A., Hall, M. G., Embleton, K. V.,
Parker, G. J. M., and Alexander, D. C. (2007). Ex-
ploiting peak anisotropy for tracking through complex
structures. In Proc. 11th IEEE International Confer-
ence on Computer Vision Workshop on MMBIA, Rio
de Janeiro.
Tuch, D. S. (2004). Q-Ball Imaging. Magnetic Resonance
in Medicine, 52:1358–1372.
Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Bel-
liveau, J. W., and Wedeen, V. J. (2002). High angular
resolution diffusion imaging reveals intravoxel white
matter fiber heterogeneity. Magnetic Resonance in
Medicine, 48:577–582.
Wedeen, V. J., Hagmann, P., Tseng, W.-Y. I., Reese, T. G.,
and Weisskoff, R. M. (2005). Mapping Complex
Tissue Architecture With Diffusion Spectrum Mag-
netic Resonance Imaging. Magnetic Resonance in
Medicine, 54:1377–1386.
Yeh, F.-C., Wedeen, V. J., and Tseng, W.-Y. I. (2010). Gen-
eralized q-Sampling Imaging. IEEE Transactions on
Medical Imaging, 29(9):1626–1635.
Zhang, F., Hancock, E. R., Goodlett, C., and Gerig, G.
(2009). Probabilistic white matter fiber tracking us-
ing particle filtering and von Mises-Fisher sampling.
Medical Image Analysis, 13(1):5–18.
NEUROTECHNIX2014-InternationalCongressonNeurotechnology,ElectronicsandInformatics
78