Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M.,
and Sch
¨
olkopf, B. (2007). Correcting sample selec-
tion bias by unlabeled data. Advances in neural infor-
mation processing systems, 19:601–608.
Joachims, T. (1997). A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization. In Pro-
ceedings of ICML ’97, 14th International Conference
on Machine Learning, pages 143–151.
Joachims, T. (1998). Text categorization with support vec-
tor machines: Learning with many relevant features.
Proceedings of ECML-98, 10th European Conference
on Machine Learning, 1398:137–142.
Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J.,
Paatero, V., and Saarela, A. (2000). Self organization
of a massive document collection. IEEE Transactions
on Neural Networks, 11(3):574–585.
Li, L., Jin, X., and Long, M. (2012). Topic correlation anal-
ysis for cross-domain text classification. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence.
Ling, X., Dai, W., Xue, G.-R., Yang, Q., and Yu, Y. (2008a).
Spectral domain-transfer learning. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 488–
496. ACM.
Ling, X., Xue, G.-R., Dai, W., Jiang, Y., Yang, Q., and Yu,
Y. (2008b). Can chinese web pages be classified with
english data source? In Proceedings of the 17th inter-
national conference on World Wide Web, pages 969–
978. ACM.
Merkl, D. (1998). Text classification with self-organizing
maps: Some lessons learned. Neurocomputing,
21(1):61–77.
Minka, T. P. (2003). A comparison of numerical op-
timizers for logistic regression. http://research.
microsoft.com/en-us/um/people/minka/papers/
logreg/.
Pan, S. J., Kwok, J. T., and Yang, Q. (2008). Transfer learn-
ing via dimensionality reduction. In Proceedings of
the AAAI ’08, 23rd national conference on Artificial
intelligence, pages 677–682.
Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011).
Domain adaptation via transfer component analysis.
IEEE Transactions on Neural Networks, 22(2):199–
210.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 22(10):1345–1359.
Porter, M. F. (1980). An algorithm for suffix stripping.
Program: electronic library and information systems,
14(3):130–137.
Prettenhofer, P. and Stein, B. (2010). Cross-language text
classification using structural correspondence learn-
ing. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
1118–1127.
Salton, G. and Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information pro-
cessing & management, 24(5):513–523.
Scott, S. and Matwin, S. (1998). Text classification using
wordnet hypernyms. In Use of WordNet in natural
language processing systems: Proceedings of the con-
ference, pages 38–44.
Sebastiani, F. (2002). Machine learning in automated
text categorization. ACM computing surveys (CSUR),
34(1):1–47.
Shimodaira, H. (2000). Improving predictive inference
under covariate shift by weighting the log-likelihood
function. Journal of statistical planning and infer-
ence, 90(2):227–244.
Sugiyama, M., Nakajima, S., Kashima, H., Von Buenau, P.,
and Kawanabe, M. (2007). Direct importance estima-
tion with model selection and its application to covari-
ate shift adaptation. In Advances in Neural Informa-
tion Processing Systems 20, volume 7, pages 1433–
1440.
Wang, P., Domeniconi, C., and Hu, J. (2008). Using
Wikipedia for co-clustering based cross-domain text
classification. In ICDM ’08, 8th IEEE International
Conference on Data Mining, pages 1085–1090. IEEE.
Weigend, A. S., Wiener, E. D., and Pedersen, J. O. (1999).
Exploiting hierarchy in text categorization. Informa-
tion Retrieval, 1(3):193–216.
Xiang, E. W., Cao, B., Hu, D. H., and Yang, Q. (2010).
Bridging domains using world wide knowledge for
transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(6):770–783.
Xue, G.-R., Dai, W., Yang, Q., and Yu, Y. (2008). Topic-
bridged plsa for cross-domain text classification. In
Proceedings of the 31st annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 627–634. ACM.
Yang, Y. and Liu, X. (1999). A re-examination of
text categorization methods. In Proceedings of the
22nd annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 42–49. ACM.
Zadrozny, B. (2004). Learning and evaluating classifiers
under sample selection bias. In Proceedings of the
21st International Conference on Machine Learning,
page 114. ACM.
Zhuang, F., Luo, P., Xiong, H., He, Q., Xiong, Y., and
Shi, Z. (2011). Exploiting associations between word
clusters and document classes for cross-domain text
categorization. Statistical Analysis and Data Mining,
4(1):100–114.
KDIR2014-InternationalConferenceonKnowledgeDiscoveryandInformationRetrieval
42