both the LNL model and the linear NARMAX
model.
Using NARMAX system identification
techniques to express the biological input-output
coupling mathematically we have modelled highly
complex neuronal structures, and thus "identified"
ganglion cell behaviour with visual scenes. These
polynomial models represent the mapping between
perception and response. The next stage in this work
will be to increase the complexity of the stimulus by
having spatially varying stimuli; we have already
started to test the effectiveness of this using the
natural image sequences.
ACKNOWLEDGEMENTS
The research leading to these results has received
funding from the European Union Seventh
Framework Programme (FP7-ICT-2011.9.11) under
grant number [600954] (“VISUALISE"). The
experimental data contributing to this study have
been supplied by the “Sensory Processing in the
Retina" research group at the Department of
Ophthalmology, University of Göttingen as part of
the VISUALISE project.
REFERENCES
Herikstad, R., Baker, J., Lachaux, J.-P., Gray, C. M., &
Yen, S.-C. (2011). Natural Movies Evoke Spike Trains
with Low Spike Time Variability in Cat Primary
Visual Cortex. Journal of Neuroscience, 31(44),
15844-15860. doi:10.1523/JNEUROSCI.5153-10.
2011
De Boer, Kuyper, P. (1968). “Triggered Correlation”.
Biomedical ngineering, vol.BME-15, no.3, pp.169-
179. doi: 10.1109/TBME.1968.4502561 Transactions
Sakai,H.M., Naka K.I., Korenberg, M.J. (1988) "White-
noise analysis in visual neuroscience". Visual
Neuroscience, 1, pp 287-296 DOI: 10.1017
Chichilnisky EJ (2001) A simple white noise analysis of
neuronal light responses. Network 12(2):199-213.
Talebi, V., Baker, C.L. (2012). "Natural versus Synthetic
Stimuli for Estimating Receptive Field Models: A
Comparison of Predictive Robustness". The Journal of
Neuroscience, Vol. 32, No. 5., pp. 1560-1576,
doi:10.1523
Marmarelis, P.Z., Naka, K.I. (1972). White-noise analysis
of a neuron chain: An application of the wiener theory.
Science 175, 1276–1278
Victor, J., Shapley, R., Knight, B. (1977). Nonlinear
analysis of cat retinal ganglion cells in the frequency
domain. Proc. Natl. Acad. Sci. U.S.A. 74(7), 3068–
3072
Victor, J. (1979) Nonlinear systems analysis: comparison
of white noise and sum of sinusoids in a biological
system. Proc. Natl. Acad. Sci. U.S.A. 76(2), 996–998
Marmarelis, V. (2004) Nonlinear Dynamic Modeling of
Physiological Systems. Wiley Interscience, Hoboken.
Korenberg, M., Hunter, I. (1996). The identification of
nonlinear biological systems: Volterra kernel
approaches. Ann. Biomed. Eng. 24(2), 250–268.
Marmarelis VZ, Zhao X. (1997). Volterra models and
three-layer perceptions. IEEE Trans Neural Networks
8:1421.
Block-oriented Nonlinear System Identification (2010),
Lecture Notes in Control and Information Sciences,
Springer Berlin / Heidelberg, Vol. 404. Giri, F. and
Bai E.W. Eds
Nehmzow, U. (2006) Scientific Methods in Mobile
Robotics: quantitative analysis of agent behaviour.
Springer, 2006.
Ostojic S, Brunel N (2011) From Spiking Neuron Models
to Linear-Nonlinear Models. PLoS Comput Biol 7(1):
e1001056. doi:10.1371/journal.pcbi.1001056
Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP,
Chichilnisky EJ. (2005). Prediction and decoding of
retinal ganglion cell responses with a probabilistic
spiking model. J Neurosci.23;25(47):11003-13.
Korenberg MJ. (1991). Parallel cascade identification and
kernel estimation for nonlinear systems. Ann Biomed
Eng 19:429.
Pillow JW, Shlens J, Paninski L, Sher A, Litke AM,
Chichilnisky EJ, Simoncelli EP. (2008) Spatio
temporal correlations and visual signaling in a
complete neuronal population. Nature 454: 995-999
Billings SA, Voon WSF. 1984. Least-squares parameter
estimation algorithms for non-linear systems. Int.J
Systems Sci 15:601.
Friederich, U., Coca, D., Billings, S.A., Juusola, M. (2009)
Data Modelling for Analysis of Adaptive Changes in
Fly Photoreceptors. Proceedings of the 16th
International Conference on Neural Information
Processing: Part I
Z. Song, S.A. Billings, D. Coca, M. Postma, R.C. Hardie,
& M. Juusola. (2009), Biophysical Modeling of a
Drosophila Photoreceptor. LNCS (ICONIP 2009, Part
I) 5863: 57–71.
Kerr, D, Nehmzow, U and Billings, S.A. (2010) Towards
Automated Code Generation for Autonomous Mobile
Robots. In: The Third Conference on Artificial
General Intelligence, Lugano. Switzerland. Atlantis
Press, Scientific Publishing, Paris, France. 5 pp.
Billings, S.A. Nonlinear system identification: NARMAX
methods in the time, frequency, and spatio-temporal
domains. John Wiley & Sons, 2013.
Lau B, Stanley GB, Dan Y (2002) Computational subunits
of visual cortical neurons revealed by artificial neural
networks. Proc Natl Acad Sci U S A 99: 8974–8979.
Prenger, R., Wu, M.C.K., David, S.V., Gallant, J.L.,
(2004) Nonlinear V1 responses to natural scenes
revealed by neural network analysis, Neural Networks,
Volume 17, Issues 5–6, Pages 663-679, 10.1016/
j.neunet.2004.03.008.
NCTA2014-InternationalConferenceonNeuralComputationTheoryandApplications
164