Simulation results illustrates that the incorporation
of the beta probability distribution and mutation
differential operation scheme enhances the search
moves of a MQPSO by generating the more
promising exemplars as the guidance particles.
Furthermore, it provides the necessary trade-off
between exploration and exploitation to global
optimization. In this context, the simulation results
show the effectiveness of our approach.
In future research, statistical significance tests to
compare different optimization approaches with
MQPSO will be carried out to monobjective and
multiobjective cases.
REFERENCES
Aote, S. S., Raghuwanshi, M. M. and Malik, L. (2013).
Brief review on particle swarm optimization:
limitations & future directions. International Journal
of Computer Science Engineering (IJCSE) 2(5): 196-
200.
Clerc, M. and Kennedy, J. F. (2002). The particle swarm:
explosion, stability and convergence in a multi-
dimensional complex space. IEEE Transactions on
Evolutionary Computation 6(1): 58-73.
Coelho, L. S. and Mariani, V. C. (2008). Particle swarm
approach based on quantum mechanics and harmonic
oscillator potential well for economic load dispatch
with valve-point effects. Energy Conversion and
Management 49(11): 3080-3085.
Das, S. and Suganthan, P. N. (2010). Problem definitions
and evaluation criteria for CEC 2011 competition on
testing evolutionary algorithms on real world
optimization problems, Technical Report, Case study
#9: Circular Antenna Array Design Problem,
December.
Das, S. and Suganthan, P. N. (2011). Differential
evolution: a survey of the state-of-the-art. IEEE
Transactions on Evolutionary Computation 15(1): 4-
31.
Eberhart, R. C. and Kennedy, J. F. (1995). A new
optimizer using particle swarm optimization. In
Proceedings of the International Symposium on Micro
Machine and Human Science, Japan, 39-45.
Eslami, M., Sharref, H., Khajehzadeh, M. and Mohamed,
A. (2012). A survey of the state of the art in particle
swarm optimization. Research Journal of Applied
Sciences, Engineering and Technology 4(9): 1181-
1197.
Fang, W., Sun, J., Ding, Y., Wu, X., and Xu, W. (2010). A
review of quantum-behaved particle swarm
optimization. IETE Technical Review 27(4): 336-348.
Griewank A.O. (1981). Generalized descent for global
optimization. Journal of Optimization Theory and
Applications 34: 11-39.
Han, K. H. and Kim, J.H. (2002). Quantum-inspired
evolutionary algorithm for a class of combinatorial
optimization. IEEE Transactions on Evolutionary
Computation 6(6): 580-593.
IEEE-CEC, New Orleans, USA (2011). Competition on
testing evolutionary algorithms on real-world
numerical optimization problems, Detailed results and
software in Matlab, http://www3.ntu.edu.sg/home/
epnsugan/index_files/CEC11-RWP/CEC11-RWP.htm.
Kamberaj, H. (2014). Q-Gaussian swarm quantum particle
intelligence on predicting global minimum of potential
energy function. Applied Mathematics and
Computation 229: 94-106.
Kennedy, J. F. and Eberhart, R. C. (1995). Particle swarm
optimization. In Proceedings of the IEEE Conference
on Neural Networks, Perth, Australia, 1942-1948.
Mariani, V. C., Duck, A. R. K., Guerra, F. A., Coelho, L.
S., and Rao, R. V. (2012). A chaotic quantum-behaved
particle swarm approach applied to optimization of
heat exchangers. Applied Thermal Engineering 42:
119-128.
Rini, D. P., Shamsuddin, S. M., and Yuhaniz, S. S. (2011).
Particle swarm optimization: technique, system and
challenges. International Journal of Computer
Applications 14(1): 19-27.
Rosenbrock, H. H. (1960). An automatic method for
finding the greatest or least value of a function. The
Computer Journal 3: 175-184.
Sedighizadeh, D. and Masehian, E. (2009). An particle
swarm optimization method, taxonomy and
applications. International Journal of Computer
Theory and Engineering 5: 486-502.
Storn, R. and Price, K. (1997). Differential evolution
a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global
Optimization 11(4): 341-359.
Sun, J., Feng, B., and Xu, W. B. (2004a). Particle swarm
optimization with particles having quantum behavior.
In Proceedings of Congress on Evolutionary
Computation, Portland, Oregon, USA, 325-331.
Sun, J., Lai, C. -H., and Wu, X. -J. (2011). Particle swarm
optimisation: classical and quantum perspectives.
Boca Raton, USA, CRC Press.
Sun, J., Wu, X., Palade, V., Fang, W., Lai, C. -H., and Xu,
W. (2012). Convergence analysis and improvements
of quantum-behaved particle swarm optimization.
Information Sciences 193: 81-103.
Sun, J., Xu, W. B., and Feng, B. (2004b). A global search
strategy of quantum-behaved particle swarm
optimization. In Proceedings of IEEE Conference on
Cybernetics and Intelligent Systems, Singapore, 111-
116.
ADifferentialBetaQuantum-behavedParticleSwarmOptimizationforCircularAntennaArrayDesign
197