SoC Processor Discovery for Program Execution Matching Using Unsupervised Machine Learning

Avi Bleiweiss

2014

Abstract

The fast cadence for evolving mobile compute systems, often extends their default processor configuration by incorporating task specific, companion cores. In this setting, the problem of matching a compute program to efficiently execute on a dynamically selected processor, poses a considerable challenge to employing traditional compiler technology. Rather, we propose an unsupervised machine learning methodology that mines a large data corpus of unlabeled compute programs, with the objective to discover optimal program-processor relations. In our work, we regard a compute program as a text document, comprised of a linear sequence of bytecode mnemonics, and further transformed into an effective representation of a bag of instruction term frequencies. Respectively, a set of concise instruction vectors is forwarded onto a finite mixture model, to identify unsolicited cluster patterns of source-target compute pairings, using the expectation-maximization algorithm. For classification, we explore k-nearest neighbor and ranked information retrieval methods, and evaluate our system by simultaneously varying the dimensionality of the training set and the SoC processor formation. We report robust performance results on both the discovery of relational clusters and feature matching.

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory, pages 267-281, Budapest, Hungary.
  2. Augonnet, C. (2011). Scheduling Tasks over Multicore Machines Enhanced with Accelerators: a Runtime System's Perspective. PhD thesis, Université Bordeaux 1, 351 cours de la Libération - 33405 TALENCE cedex.
  3. Baeza-Yates, R. and Ribeiro-Neto, B., editors (1999). Modern Information Retrieval. ACM Press Series/Addison Wesley, Essex, UK.
  4. Cormen, T. H., Leiserson, C. H., Rivest, R. L., and Stein, C. (1990). Introduction to Algorithms. MIT Press/McGraw-Hill Book Company, Cambridge, MA.
  5. Dalvik (2007). Bytecode for Dalvik VM. http://source.android.com/devices/tech/dalvik/ dalvik-bytecode.html.
  6. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Royal Statistical Society, 39(1):1-38.
  7. Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Unsupervised learning and clustering. In Pattern Classification, pages 517-601. Wiley, New York, NY.
  8. Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association, 97(458):611-631.
  9. Fraley, C. and Raftery, A. E. (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24(2):155-181.
  10. Kohavi, R. and Provost, F. (1998). Glossary of terms. Machine Learning, 30(2):271-274.
  11. Manning, C. D., Raghavan, P., and Schutze, H. (2008). Introduction to Information Retrieval. Cambridge University Press, Cambridge, United Kingdom.
  12. Mclachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York, NY.
  13. Mclachlan, G. J. and Peel, D. (2000). Finite Mixture Models. John Wiley and Sons, New York, NY.
  14. Ngatchou-Wandji, J. and Bulla, J. (2013). On choosing a mixture model for clustering. Journal of Data Science, 11(1):157-179.
  15. Rajaraman, R. and Ullman, J. D. (2011). Mining of Massive Datasets. Cambridge University Press, New York, NY.
  16. Renderscript (2011). Renderscript compute platform. http://developer.android.com/guide/topics/renderscript/ compute.html.
  17. Salton, G., Wong, A., and Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11):613-620.
  18. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464.
  19. Wang, C., Bi, K., Hu, Y., Li, H., and Cao, G. (2012). Extracting search-focused key n-grams for relevance ranking in web search. In Web Search and Data Mining (WSDM), pages 343-352, Seattle, WA.
  20. Zhu, S., Wu, J., Xiong, H., and Xia, G. (2011). Scaling up top-k cosine similarity search. Data and Knowledge Engineering, 70(1):60-83.
Download


Paper Citation


in Harvard Style

Bleiweiss A. (2014). SoC Processor Discovery for Program Execution Matching Using Unsupervised Machine Learning . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014) ISBN 978-989-758-048-2, pages 192-201. DOI: 10.5220/0005070301920201


in Bibtex Style

@conference{kdir14,
author={Avi Bleiweiss},
title={SoC Processor Discovery for Program Execution Matching Using Unsupervised Machine Learning},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)},
year={2014},
pages={192-201},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005070301920201},
isbn={978-989-758-048-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)
TI - SoC Processor Discovery for Program Execution Matching Using Unsupervised Machine Learning
SN - 978-989-758-048-2
AU - Bleiweiss A.
PY - 2014
SP - 192
EP - 201
DO - 10.5220/0005070301920201