like to thank Zhangyu Chang for helpful discussions.
REFERENCES
Allison, A. and Abbott, D. (2002). The physical basis
for parrondo’s games. Fluctuation and Noise Letters,
2(04):L327L341.
Clote, P. (2005). An efficient algorithm to compute the land-
scape of locally optimal RNA secondary structures
with respect to the nussinov-jacobson energy model.
Journal of computational biology, 12(1):83101.
Debenedetti, P. G. and Stillinger, F. H. (2001). Su-
percooled liquids and the glass transition. Nature,
410(6825):259267.
Ding, Y.-S. and Zhang, T.-L. (2008). Using chous pseudo
amino acid composition to predict subcellular lo-
calization of apoptosis proteins: An approach with
immune genetic algorithm-based ensemble classifier.
Pattern Recognition Letters, 29(13):1887–1892.
Dinis, L. (2008). Optimal sequence for parrondo games.
Physical Review E, 77(2):021124.
Dinis, L. and Parrondo, J. M. R. (2003). Optimal strate-
gies in collective parrondo games. Europhysics Let-
ters (EPL), 63:319–325.
Dins, L. and Parrondo, J. M. (2004). Inefficiency of voting
in parrondo games. Physica A: Statistical Mechanics
and its Applications, 343:701–711.
Doye, J. P. (2002). Network topology of a potential energy
landscape: A static scale-free network. Physical re-
view letters, 88(23):238701.
Fong, L. Y. and Szeto, K. Y. (2001). Rules extraction in
short memory time series using genetic algorithms.
The European Physical Journal B-Condensed Matter
and Complex Systems, 20(4):569572.
Goldberg, D. E. and Holland, J. H. (1988). Genetic al-
gorithms and machine learning. Machine learning,
3(2):9599.
Harmer, G. P. and Abbott, D. (1999). Game theory: Los-
ing strategies can win by parrondo’s paradox. Nature,
402(6764):864864.
Harmer, G. P. and Abbott, D. (2002). A review of
parrondos paradox. Fluctuation and Noise Letters,
2(2):R71R107.
Holland, J. H. (1975). Adaptation in natural and artificial
systems: An introductory analysis with applications to
biology, control, and artificial intelligence. U Michi-
gan Press.
Jiang, R., Szeto, K. Y., Luo, Y. P., and Hu, D. C. (2000).
Distributed parallel genetic algorithm with path split-
ting scheme for the large traveling salesman problems.
In Proceedings of Conference on Intelligent Informa-
tion Processing, 16th World Computer Congress, page
2125.
Messom, C. (2002). Genetic algorithms for auto-tuning mo-
bile robot motion control.
Parrondo, J. M. R. (1996). How to cheat a bad mathemati-
cian. EEC HC&M Network on Complexity and Chaos.
Parrondo, J. M. R., Dinis, L., Garca-Torao, E., and Sotillo,
B. (2007). Collective decision making and paradox-
ical games. The European Physical Journal Special
Topics, 143(1):39–46.
Patel, A. N., Davis, D., Guthrie, C. F., Tuk, D., Nguyen,
T. T., Williams, J., and others (2005). Optimiz-
ing cyclic steam oil production with genetic algo-
rithms. In SPE Western Regional Meeting. Society of
Petroleum Engineers.
Pond, S. L. K., Posada, D., Gravenor, M. B., Woelk, C. H.,
and Frost, S. D. W. (2006). GARD: a genetic algo-
rithm for recombination detection. Bioinformatics,
22(24):3096–3098.
Shiu, K. L. and Szeto, K. Y. (2008). Self-adaptive mutation
only genetic algorithm: An application on the opti-
mization of airport capacity utilization. In Intelligent
Data Engineering and Automated LearningIDEAL
2008, page 428435. Springer.
Szeto, K. Y. and Fong, L. Y. (2000). How adaptive agents in
stock market perform in the presence of random news:
A genetic algorithm approach. In Intelligent Data
Engineering and Automated LearningIDEAL 2000.
Data Mining, Financial Engineering, and Intelligent
Agents, page 505510. Springer.
Toral, R., Amengual, P., and Mangioni, S. (2003). Par-
rondo’s games as a discrete ratchet. Physica A: Statis-
tical Mechanics and its Applications, 327(1-2):105–
110.
Wagon, S. and Velleman, D. (2001). Parrondo’s para-
dox. Mathematica in Education and Research, 9(3-
4):8590.
Wales, D. J., Doye, J. P., Miller, M. A., Mortenson,
P. N., and Walsh, T. R. (2000). Energy landscapes:
from clusters to biomolecules. Advances in Chemical
Physics, 115:1112.
Wales, D. J., Miller, M. A., and Walsh, T. R.
(1998). Archetypal energy landscapes. Nature,
394(6695):758760.
Wu, D. and Szeto, K. Y. (2014). Extended parrondo’s game
and brownian ratchets: Strong and weak parrondo ef-
fect. Physical Review E, 89(2):022142.
Xia, C., Guo, P., Shi, T., and Wang, M. (2004). Speed con-
trol of brushless DC motor using genetic algorithm
based fuzzy controller. In Proceeding of the 2004
International Conference on Intelligent Mechatronics
and Automation, Chengdu, China, 3rd edn. A Treatise
on Electricity and Magnetism, volume 2, page 6873.
ApplicationsofGeneticAlgorithmonOptimalSequenceforParrondoGames
37