Han, J. and Kamber, M. (2000). Data Mining: Concepts
and Techniques. Morgan Kaufmann, San Francisco,
CA, USA, 2nd edition.
Liu, Y.-P., Wu, M.-G., and Qian, J.-X. (2006). Evolving
neural networks using the hybrid of ant colony opti-
mization and bp algorithms. In 3rd International Con-
ference on Advances in Neural Networks (ISNN’06),
pages 714–722, Berlin, Heidelberg. Springer-Verlag.
Martens, D., Backer, M. D., Haesen, R., Vanthienen, J.,
Snoeck, M., and Baesens, B. (2007). Classification
with ant colony optimization. IEEE Transactions on
Evolutionary Computation, 11:651–665.
Otero, F. and Freitas, A. (2013). Improving the Inter-
pretability of Classification Rules Discovered by an
Ant Colony Algorithm. In Genetic and Evolutionary
Computation Conference (GECCO-2013), pages 73–
80, New York, NY, USA. ACM Press.
Otero, F., Freitas, A., and Johnson, C. (2009). Handling
continuous attributes in ant colony classification algo-
rithms. In IEEE Symposium on Computational Intelli-
gence in Data Mining (CIDM 2009), pages 225–231,
New York, NY, USA. IEEE Press.
Otero, F., Freitas, A., and Johnson, C. (2013). A New Se-
quential Covering Strategy for Inducing Classification
Rules with Ant Colony Algorithms. IEEE Transac-
tions on Evolutionary Computation, 17(1):64–74.
Otero, F. E. B., Freitas, A. A., and Johnson, C. G.
(2012). Inducing Decision Trees with an Ant Colony
Optimization Algorithm. Applied Soft Computing,
12(11):3615–3626.
Parpinelli, R. S., Lopes, H. S., and Freitas, A. A. (2002).
Data mining with an ant colony optimization algo-
rithm. IEEE Transactions on Evolutionary Compu-
tation, 6(4):321–332.
Quinlan, J. (1993). Programs for Machine Learning. Mor-
gan Kaufmann.
Salama, K., Abdelbar, A., and Freitas, A. (2011). Mul-
tiple Pheromone Types and Other Extensions to the
Ant-Miner Classification Rule Discovery Algorithm.
Swarm Intelligence, 5(3-4):149–182.
Salama, K., Abdelbar, A., Otero, F., and Freitas, A. (2013).
Utilizing multiple pheromones in an ant-based algo-
rithm for continuous-attribute classification rule dis-
covery. Applied Soft Computing, 13(1):667–675.
Salama, K. and Freitas, A. (2013a). Ant Colony Algorithms
for Constructing Bayesian Multi-net Classifiers. Ma-
chine Learning - (Under Review).
Salama, K. and Freitas, A. (2013b). Clustering-based
Bayesian Multi-net Classifier Construction with Ant
Colony Optimization. In IEEE Congress on Evo-
lutionary Computation (IEEE CEC) (2013), pages
3079–3086, New York, NY, USA. IEEE Press.
Salama, K. and Freitas, A. (2013c). Extending the ABC-
Miner Bayesian Classification Algorithm. In 6th In-
ternational Workshop on Nature Inspired Cooperative
Strategies for Optimization (NICSO’13), volume 512
of SCI, pages 1–12, Berlin. Springer.
Salama, K. and Freitas, A. (2013d). Learning Bayesian
Network Classifiers Using Ant Colony Optimization.
Swarm Intelligence, 7(2-3):229–254.
Socha, K. and Blum, C. (2005). Training feed-forward neu-
ral networks with ant colony optimization: An appli-
cation to pattern classification. In 5th International
Conference on Hybrid Intelligent Systems (HIS ’05),
pages 233–238, Washington, DC, USA. IEEE Com-
puter Society.
Socha, K. and Blum, C. (2007). An ant colony optimization
algorithm for continuous optimization: Application to
feed-forward neural network training. Neural Com-
puting & Applications, 16:235–247.
Socha, K. and Dorigo, M. (2008). Ant colony optimization
for continuous domains. European Journal of Opera-
tional Research, 185:1155–1173.
St
¨
utzle, T. and Hoos, H. (1997). MAX-MIN Ant System
and local search for the traveling salesman problem.
Evolutionary Computation, 1997., IEEE International
Conference on, pages 309–314.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining. Addison Wesley, 2nd edition.
Witten, I. H. and Frank, E. (2010). Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, CA, USA, 3rd edition.
ECTA2014-InternationalConferenceonEvolutionaryComputationTheoryandApplications
48