REFERENCES
Akın A.A., Akın, M.D. 2007. Zemberek, an open source
NLP framework for Turkic languages. Available at
http://zemberek.googlecode.com/.
Asanov, D., 2011. Algorithms and Methods in
Recommender Systems. Berlin Institute of
Technology, http://www.snet.tuberlin.
Balabanovic, M., Shoham, Y. 1997. Fab: Content-based,
Collaborative Recommendation. Communications of
the ACM 40(3), pp:66-72.
Bennett, J.. Lanning S. 2007. The netflix prize. In
Proceedings of KKDD cup and workshop, p. 35.
Billsus, D., Pazzani, M. 1999. A hybrid user model for
news story classification. In Proceedings of the
Seventh International Conference on User Modeling.
Banff, Canada, pp. 99-108.
Cantador, I., Bellogín, A., Castells, P.. 2008. Ontology-
Based Personalised and Context-Aware
Recommendations of News Items. In Proceedings of
the 2008 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology.
O'Conner, M., Herlocker, J. 1999. Clustering items for
collaborative filtering. In Proceedings of the ACM
SIGIR Workshop on Recommender Systems, Berkeley,
CA.
Davis, J., Goadrich, M. 2006. The relationship between
precision recall and roc curves. In Proceedings of the
23rd international conference on machine learning
(ICML).
Fisher, M. J., Fieldsend, J.E., Everson R. M. 2004.
Precision and recall optimisation for information
access tasks. In first workshop on roc analysis in AL.
European conference on artificial intelligence
(ECAI'2004), Valencia, Spain.
Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.
2007. User profiles for personalized information
access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.)
The Adaptive Web: Methods and Strategies of Web
Personalization. LNCS, Vol. 4321, pp. 54–89.
Springer, Heidelberg.
Gong, S. 2010. A Collaborative Filtering
Recommendation Algorithm Based on User Clustering
and Item Clustering. Journal of Software, Vol. 5, No.
7, pp. 745-752.
Goossen, F., IJntema, W. Frasincar, F., Hogenboom, F.,
Kaymak. U. 2011. News personalization using the CF-
IDF semantic recommender. In Proceedings of the
International Conference on Web Intelligence, Mining
and Semantics (WIMS '11).
Hahn, U., Mani, I. 2000. The challenges of automatic
summarization. Computer, 33, pp. 29–36.
Hovy, E., Lin, C-Y. 1999. Automated Text Summarization
in SUMMARIST. I. Mani and M.T. Maybury (eds.),
Advances in Automatic Text Summarization, The MIT
Press, pp. 81-94.
Kompan, M., Graudina, V. 2010. Content-based news
recommendation.
In Proceedings of the 11th
Conference EC-WEB, pp. 61-72.
Li, L., Chu, W., Langford, J., Schapire, R.E. A 2010.
Contextual-Bandit Approach to Personalized News
Article Recommendation. In Proceedings of the 19th
international conference on World wide web, pp. 661-
670.
Li, L., Li, T. 2013. News recommendation via hypergraph
learning: encapsulation of user behavior and news
content. In Proceedings of the sixth ACM international
conference on Web search and data mining. pp. 305-
314
Liang, T.-P., Lai, H-J. 2002. Discovering User Interests
from Web Browser Behavior: An Application to
Internet News Services. In Proceedings of 35th
Annual Hawai'i International Conference on Systems
Sciences. IEEE Computer Society Press.
Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B. 2011.
SCENE: A scalable two-stage personalized news
recommendation system. In Proceedings of the 34th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Beijing, China, pp.124-134.
Liu, J., Dolan, P., Pedersen, E.R. 2010. Personalized News
Recommendation Based on Click Behavior. In
Proceedings of the 14th International Conference on
Intelligent User Interfaces, Hong Kong, China.
McLaughlin, M.R, Herlocker, J.L., 2004. A Collaborative
Filtering Algorithm and Evaluation Metric that
Accurately Model the User Experience, Proceedings
of the 27th annual international ACM SIGIR
conference on Research and development in
information retrieval, Sheffield, United Kingdom.
Ozsoy, M.G., Cicekli, I., Alpaslan, F.N. 2011 Text
Summarization using Latent Semantic Analysis,
Journal of Information Science, Vol. 37, No. 4,
pp:405-417.
Radev, D.R., Fan, W., Zhang, Z. 2001. WebInessence : A
Personalized Web-Based Multi-Document
Summarization and Recommendation System, In
Proceedings of the NAACL-01, pp. 79–88.
Salton, G., McGill, M.J. 1986. Introduction to Modern
Information Retrieval, McGraw-Hill, Inc, New York,
NY.
Saranya, K.G., Sadhasivam, G.S. 2012. A Personalized
Online News Recommendation System. International
Journal of Computer Applications, 57.
Tan, A.-H., Toe. C. 1998. Learning user profiles for
personalized information dissemination. In
Proceedings of 1998 IEEE International Joint
Conference on Neural Networks, Alaska, pp: 183-188.
Zhou, T., Ren, J., Medo, M., Zhang, Y. 2007. Bipartite
network projection and personal recommendation.
Phys. Rev. E 76, 046115.
Zhou, T., Zoltan, K., Liu, J., Medo, M., Wakeling, J. R.,
Zhang, Y. 2010. Solving the apparent diversity-
accuracy dilemma of recommender systems. In
Proceedings of the National Academy of Sciences,
107(10), 4511-4515.
KDIR2014-InternationalConferenceonKnowledgeDiscoveryandInformationRetrieval
60