STDP Learning Under Variable Noise Levels

Dalius Krunglevicius

2014

Abstract

Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules which are firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns in a very noisy environment. Parameters of the neuron are only optimal, however, for a certain range of quantity of injected noise. This means the level of noise must be known beforehand so that the parameters can be set accordingly. That could be a real problem when noise levels vary over time. We found that the model of a leaky-integrate-and-fire inhibitory neuron with an inverted STDP learning rule is capable of adjusting its response rate to a particular level of noise. In this paper we suggest a method that uses an inverted SDTP learning rule to modulate spiking rate of the trained neuron. This method is adaptive to noise levels; subsequently spiking neuron can be trained to learn the same spatiotemporal pattern with a wide range of background noise injected during the learning process.

References

  1. Abbott L. F,, Nelson S. B. (2000) Synaptic plasticity: taming the beast. Nat. Neurosci. 3:1178-1183.
  2. Bi G. Q. and Poo M. M. (1998). Synaptic modifications in cultured Hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 18:10464-72.
  3. Bell C. C., Han V. Z., Sugawara Y., Grant K. (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278-81.
  4. Burkitt A. N., Meffin H., Grayden D. B. (2004) Spiketiming-dependent plasticity: the relationship to ratebased learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940.
  5. Caporale N., Dan Y. (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci.31:25-46.
  6. Fellous J. M., Tiesinga P. H., Thomas P. J., Sejnowski T. J. (2004) Discovering spike patterns in neuronal responses. J Neurosci 24: 2989-3001.
  7. Gerstner W., Kempter R., van Hemmen J. L., Wagner H. (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76-81.
  8. Gerstner W., Kistler W. M. (2002) Spiking neuron models. Cambridge: Cambridge UP.
  9. Gupta A., Long L. N. (2007) Character recognition using spiking neural networks. IJCNN, pages 53-58.
  10. Guyonneau R., VanRullen R., Thorpe S. J. (2005) Neurons tune to the earliest spikes through STDP. Neural Comput. 17: 859-879.
  11. Hu J., Tang H., Tan K. C., Li H., Shi L. (2013) A spiketiming-based integrated model for pattern recognition. Neural Computation 25: 450-472.
  12. Kasabov N., Dhoble K., Nuntalid N., Indiveri G. (2013) Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41: 188-201.
  13. Kayser C., Montemurro M. A., Logothetis N. K., Panzeri S. (2009) Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61:597-608.
  14. Maass W. (1997 ) Networks of spiking neurons: The third generation of neural network models. Neural Networks. 10, 1659-1671.
  15. Masquelier T., Guyonneau R., Thorpe S. J. (2008) Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoSONE, 3(1), e1377.
  16. Masquelier T., Guyonneau R., Thorpe S. J. (2009) Competitive STDP-based spike pattern learning. Neural Comput 21:1259-1276.
  17. Morrison A., Diesmann M., Gerstner W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459-478. doi: 10.1007/s00422-008-0233-1.
  18. Nessler B., Pfeiffer M., Maass M. (2009). STDP enables spiking neurons to detect hidden causes of their inputs. Proceedings of NIPS Advances in Neural Information Processing Systems (Vancouver: MIT Press).
  19. Pfister J. P., Gerstner W. (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci. 2006;26:9673-9682.
  20. Rolls E. T., Aggelopoulos N. C., Franco L., Treves A (2004) Information encoding in the inferior temporal cortex: contributions of the firing rates and correlations between the firing of neurons. Biol Cybern. 90:19-32.
  21. Song S., Miller K. D., Abbott L. F. (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci. 3: 919-926.
  22. Tzounopoulos T., Kim Y., Oertel D., Trussell L. O. (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat. Neurosci. 7:719-25.
  23. Tzounopoulos T., Rubio M. E., Keen J. E., Trussell L. O. (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timingdependent plasticity. Neuron54:291-301.
  24. van Elburg R. A., van Ooyen A. (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comp Biol. 2010;6:1000781.
  25. VanRullen R., Thorpe S. J. (2001) Rate coding versus temporal order coding: whatthe retinal ganglion cells tell the visual cortex. Neural Comput. 13: 1255-1283.
  26. VanRullen R., Guyonneau R., Thorpe S. J. (2005) Spike times make sense. Trends Neurosci. 28:1-4.
Download


Paper Citation


in Harvard Style

Krunglevicius D. (2014). STDP Learning Under Variable Noise Levels . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 165-171. DOI: 10.5220/0005072401650171


in Bibtex Style

@conference{ncta14,
author={Dalius Krunglevicius},
title={STDP Learning Under Variable Noise Levels},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={165-171},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005072401650171},
isbn={978-989-758-054-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - STDP Learning Under Variable Noise Levels
SN - 978-989-758-054-3
AU - Krunglevicius D.
PY - 2014
SP - 165
EP - 171
DO - 10.5220/0005072401650171