STDP Learning Under Variable Noise Levels
Dalius Krunglevicius
2014
Abstract
Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules which are firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns in a very noisy environment. Parameters of the neuron are only optimal, however, for a certain range of quantity of injected noise. This means the level of noise must be known beforehand so that the parameters can be set accordingly. That could be a real problem when noise levels vary over time. We found that the model of a leaky-integrate-and-fire inhibitory neuron with an inverted STDP learning rule is capable of adjusting its response rate to a particular level of noise. In this paper we suggest a method that uses an inverted SDTP learning rule to modulate spiking rate of the trained neuron. This method is adaptive to noise levels; subsequently spiking neuron can be trained to learn the same spatiotemporal pattern with a wide range of background noise injected during the learning process.
References
- Abbott L. F,, Nelson S. B. (2000) Synaptic plasticity: taming the beast. Nat. Neurosci. 3:1178-1183.
- Bi G. Q. and Poo M. M. (1998). Synaptic modifications in cultured Hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 18:10464-72.
- Bell C. C., Han V. Z., Sugawara Y., Grant K. (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278-81.
- Burkitt A. N., Meffin H., Grayden D. B. (2004) Spiketiming-dependent plasticity: the relationship to ratebased learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940.
- Caporale N., Dan Y. (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci.31:25-46.
- Fellous J. M., Tiesinga P. H., Thomas P. J., Sejnowski T. J. (2004) Discovering spike patterns in neuronal responses. J Neurosci 24: 2989-3001.
- Gerstner W., Kempter R., van Hemmen J. L., Wagner H. (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76-81.
- Gerstner W., Kistler W. M. (2002) Spiking neuron models. Cambridge: Cambridge UP.
- Gupta A., Long L. N. (2007) Character recognition using spiking neural networks. IJCNN, pages 53-58.
- Guyonneau R., VanRullen R., Thorpe S. J. (2005) Neurons tune to the earliest spikes through STDP. Neural Comput. 17: 859-879.
- Hu J., Tang H., Tan K. C., Li H., Shi L. (2013) A spiketiming-based integrated model for pattern recognition. Neural Computation 25: 450-472.
- Kasabov N., Dhoble K., Nuntalid N., Indiveri G. (2013) Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41: 188-201.
- Kayser C., Montemurro M. A., Logothetis N. K., Panzeri S. (2009) Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61:597-608.
- Maass W. (1997 ) Networks of spiking neurons: The third generation of neural network models. Neural Networks. 10, 1659-1671.
- Masquelier T., Guyonneau R., Thorpe S. J. (2008) Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoSONE, 3(1), e1377.
- Masquelier T., Guyonneau R., Thorpe S. J. (2009) Competitive STDP-based spike pattern learning. Neural Comput 21:1259-1276.
- Morrison A., Diesmann M., Gerstner W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459-478. doi: 10.1007/s00422-008-0233-1.
- Nessler B., Pfeiffer M., Maass M. (2009). STDP enables spiking neurons to detect hidden causes of their inputs. Proceedings of NIPS Advances in Neural Information Processing Systems (Vancouver: MIT Press).
- Pfister J. P., Gerstner W. (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci. 2006;26:9673-9682.
- Rolls E. T., Aggelopoulos N. C., Franco L., Treves A (2004) Information encoding in the inferior temporal cortex: contributions of the firing rates and correlations between the firing of neurons. Biol Cybern. 90:19-32.
- Song S., Miller K. D., Abbott L. F. (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci. 3: 919-926.
- Tzounopoulos T., Kim Y., Oertel D., Trussell L. O. (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat. Neurosci. 7:719-25.
- Tzounopoulos T., Rubio M. E., Keen J. E., Trussell L. O. (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timingdependent plasticity. Neuron54:291-301.
- van Elburg R. A., van Ooyen A. (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comp Biol. 2010;6:1000781.
- VanRullen R., Thorpe S. J. (2001) Rate coding versus temporal order coding: whatthe retinal ganglion cells tell the visual cortex. Neural Comput. 13: 1255-1283.
- VanRullen R., Guyonneau R., Thorpe S. J. (2005) Spike times make sense. Trends Neurosci. 28:1-4.
Paper Citation
in Harvard Style
Krunglevicius D. (2014). STDP Learning Under Variable Noise Levels . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 165-171. DOI: 10.5220/0005072401650171
in Bibtex Style
@conference{ncta14,
author={Dalius Krunglevicius},
title={STDP Learning Under Variable Noise Levels},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={165-171},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005072401650171},
isbn={978-989-758-054-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - STDP Learning Under Variable Noise Levels
SN - 978-989-758-054-3
AU - Krunglevicius D.
PY - 2014
SP - 165
EP - 171
DO - 10.5220/0005072401650171