ceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 487–499, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.
Aloul, F. A., Markov, I. L., and Sakallah, K. A. (2003a).
Shatter: efficient symmetry-breaking for boolean sat-
isfiability. In DAC, pages 836–839. ACM.
Aloul, F. A., Ramani, A., Markov, I. L., and Sakallah, K. A.
(2002). Solving difficult SAT instances in the pres-
ence of symmetry. In Proceedings of the 39th Design
Automation Conference (DAC 2002), pages 731–736.
ACM Press.
Aloul, F. A., Ramani, A., Markov, I. L., and Sakallah, K. A.
(2003b). Solving difficult instances of boolean satis-
fiability in the presence of symmetry. IEEE Trans. on
CAD of Integrated Circuits and Systems, 22(9):1117–
1137.
Aloul, F. A., Ramani, A., Markov, I. L., and Sakallak, K. A.
(2004). Symmetry breaking for pseudo-boolean satis-
fiabilty. In ASPDAC’04, pages 884–887.
Benhamou, B. (1994). Study of symmetry in constraint sat-
isfaction problems. PPCP’94, pages 246–254.
Benhamou, B. and Sais, L. (1992a). Theoretical study of
symmetries in propositional calculus and application.
In CADE’11, pages 281–294.
Benhamou, B. and Sais, L. (1992b). Theoretical study of
symmetries in propositional calculus and applications.
In CADE, pages 281–294.
Benhamou, B. and Sais, L. (1994a). Tractability through
symmetries in propositional calculus. In JAR, 12:89–
102.
Benhamou, B. and Sais, L. (1994b). Tractability through
symmetries in propositional calculus. J. Autom. Rea-
soning, 12(1):89–102.
Besson, J., Boulicaut, J.-F., Guns, T., and Nijssen, S.
(2010). Generalizing itemset mining in a con-
straint programming setting. In Inductive Databases
and Constraint-Based Data Mining, pages 107–126.
Springer.
Bonchi, F. and Lucchese, C. (2007). Extending the state-
of-the-art of constraint-based pattern discovery. Data
Knowl. Eng., 60(2):377–399.
Bucil˘a, C., Gehrke, J., Kifer, D., and White, W. (2003).
Dualminer: A dual-pruning algorithm for itemsets
with constraints. Data Mining and Knowledge Dis-
covery, 7(3):241–272.
Burdick, D., Calimlim, M., and Gehrke, J. (2001). Mafia: A
maximal frequent itemset algorithm for transactional
databases. In In ICDE, pages 443–452.
Crawford, J., Ginsberg, M., Luks, E., and Roy, A. (1996).
Symmetry-breaking predicates for search problems.
In Knowledge Representation (KR), pages 148–159.
Morgan Kaufmann.
Darga, P. T., Sakallah, K. A., and Markov, I. L. (2008).
Faster symmetry discovery using sparsity of symme-
tries. In Proceedings of the 45th Annual Design Au-
tomation Conference, DAC ’08, pages 149–154, New
York, NY, USA. ACM.
Desrosiers, C., Galinier, P., Hansen, P., and Hertz, A.
(2007). Improving frequent subgraph mining in the
presence of symmetry. In MLG.
Freuder, E. (1991). Eliminating interchangeable values
in constraints satisfaction problems. AAAI-91, pages
227–233.
Grahne, G. and Zhu, J. (2005). Fast algorithms for frequent
itemset mining using fp-trees. IEEE Trans. on Knowl.
and Data Eng., 17(10):1347–1362.
Guns, T., Dries, A., Tack, G., Nijssen, S., and Raedt,
L. D. (2013). Miningzinc: A modeling language for
constraint-based mining. In International Joint Con-
ference on Artificial Intelligence, pages –, Beijing,
China.
Guns, T., Nijssen, S., and De Raedt, L. (2011a). Itemset
mining: A constraint programming perspective. Artif.
Intell., 175(12-13):1951–1983.
Guns, T., Nijssen, S., and de Raedt, L. (2011b). k-pattern set
mining under constraints. IEEE TKDE, 99(PrePrints).
Gly, A., Medina, R., Nourine, L., and Renaud, Y. (2005).
Uncovering and reducing hidden combinatorics in
guigues-duquenne bases. In Ganter, B. and Godin, R.,
editors, ICFCA, Lecture Notes in Computer Science,
pages 235–248. Springer.
Han, J., Pei, J., and Yin, Y. (2000). Mining frequent pat-
terns without candidate generation. In Proceedings
of the 2000 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’00, pages 1–12,
New York, NY, USA. ACM.
Henriques, R., Lynce, I., and Manquinho, V. M. (2012). On
when and how to use sat to mine frequent itemsets.
CoRR, abs/1207.6253.
Jabbour, S., Khiari, M., Sais, L., Salhi, Y., and Tabia, K.
(2013a). Symmetry-based pruning in itemset mining.
In 25th International Conference on Tools with Arti-
ficial Intelligence(ICTAI’13), Washington DC, USA.
IEEE Computer Society.
Jabbour, S., Sais, L., and Salhi, Y. (2013b). Boolean satisfi-
ability for sequence mining. In CIKM, pages 649–658.
Jabbour, S., Sais, L., and Salhi, Y. (2013c). Top-k fre-
quent closed itemset mining using top-k sat prob-
lem. In European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery
in Databases (ECML/PKDD’13), volume 146, pages
131–140. Springer.
Jabbour, S., Sais, L., Salhi, Y., and Tabia, K. (2012). Sym-
metries in itemset mining. In 20th European Confer-
ence on Artificial Intelligence (ECAI ’12), pages 432–
437. IOS Press.
Khiari, M., Boizumault, P., and Crmilleux, B. (2010). Con-
straint programming for mining n-ary patterns. In Co-
hen, D., editor, CP, volume 6308 of Lecture Notes in
Computer Science, pages 552–567. Springer.
Krishnamurthy, B. (1985). Short proofs for tricky formulas.
Acta Inf., 22(3):253–275.
Krishnamurty, B. (1985). Short proofs for tricky formulas.
Acta Inf., (22):253–275.
M´etivier, J.-P., Boizumault, P., Cr´emilleux, B., Khiari, M.,
and Loudni, S. (2012). A constraint language for
declarative pattern discovery. In Proceedings of the
27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 119–125, New York, NY, USA. ACM.
Minato, S. I. (2006). Symmetric item set mining based on
zero-suppressed bdds. In Todorovski, L., Lavrac, N.,
SymmetryBreakinginItemsetMining
95