Denecke, K. (2008, April). Using Sentiwordnet for
multilingual sentiment analysis. In Data Engineering
Workshop, 2008. ICDEW 2008. IEEE 24th
International Conference on (pp. 507-512). IEEE.
Esuli, A., Sebastiani, F. (2006). Sentiwordnet: A publicly
available lexical resource for opinion mining. In
Proceedings of LREC (Vol. 6, pp. 417-422).
Go, A., Bhayani, R., Huang, L. (2009). Twitter sentiment
classification using distant supervision. CS224N
Project Report, Stanford, 1-12.
Jiang, J. J., Conrath, D. W. (1997). Semantic similarity
based on corpus statistics and lexical taxonomy. arXiv
preprint cmp-lg/9709008.
Kamps, J., Marx M., (2002). Words with attitude. In
Proceedings of the 1st International Conference on
Global WordNet, pages 332–341. CIIL, Mysore India.
Liu, K. L., Li, W. J., Guo, M. (2012). Emoticon Smoothed
Language Models for Twitter Sentiment Analysis. In
AAAI.
Mihalcea, R., Banea, C., Wiebe, J. (2007). Learning
multilingual subjective language via cross-lingual
projections. In ANNUAL MEETING-ACL (Vol. 45,
No. 1, p. 976).
Miller, G. A. (1995). WordNet: a lexical database for
English. Communications of the ACM, 38(11), 39-41.
Mohammad, S. M., Kiritchenko, S., Zhu, X. (2013). NRC-
Canada: Building the state-of-the-art in sentiment
analysis of tweets. arXiv preprint arXiv:1308.6242.
Nakov, P., Kozareva, Z., Ritter, A., Rosenthal, S.,
Stoyanov, V., Wilson, T. (2013). Semeval-2013 task
2: Sentiment analysis in twitter.
Narr, S., Hülfenhaus, M., Albayrak, S. (2012). Language-
independent Twitter sentiment analysis. In KDML
workshop on knowledge discovery, data mining and
machine learning.
Nielsen, F. Å. (2011). A new ANEW: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.
Ortega R., Fonseca A., Gutierrez Y. and Montoyo
A.,(2013) SSA-UO: Unsupervised Twitter Sentiment
Analysis, in SemEval 2013.
Pang B., Lee L., and Vaithyanathan S. (2002). Thumbs
up? Sentiment classification using machine learning
techniques. In Proceeding of Empirical Methods in
Natural Language Processing, pages 79–86.
Pang B, Lee L. (2008) Opinion Mining and Sentiment
Analysis, Foundations and Trends in Information
Retrieval, Vol. 2, Nos. 1-2, pp. 1-135, 2008.
Patwardhan S., (2003). Incorporating dictionary and
corpus information into a Context Vector Measure of
Semantic Relatedness. Master’s thesis, Dept. of
Computer Science, University of Minnesota, Duluth.
Riloff, E., Wiebe, J. (2003) Learning Extraction Patterns
for Subjective Expressions, Proceedings of the 2003
Conference on Empirical Methods in Natural
Language Processing (EMNLP-03).
Saif, H., Fernandez, M., He, Y., Alani, H. (2013).
Evaluation datasets for twitter sentiment analysis. In
Proceedings ESSEM in Conjunction with AI* IA
Conference, Turin, Italy.
Thelwall, M., Buckley, K., Paltoglou, G. (2012).
Sentiment strength detection for the social web.
Journal of the American Society for Information
Science and Technology, 63(1), 163-173.
Thelwall, M. (2013). Heart and soul: Sentiment strength
detection in the social web with sentistrength.
Cyberemotions, 1-14.
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas,
A. (2010). Sentiment strength detection in short
informal text. Journal of the American Society for
Information Science and Technology, 61(12), 2544–
2558.
Thurlow, C., & Brown, A. (2003). Generation Txt? The
sociolinguistics of young people’s text-messaging.
Discourse analysis online, 1(1), 30.
Turney, P. (2002). Thumbs up or thumbs down? Semantic
orientation applied to unsupervised classification of
reviews. Pages 417–424.
Wiebe, J., Mihalcea, R. (2006). Word sense and
subjectivity. In Proceedings of the 21st ICCL and the
44th annual meeting of the ACL (pp. 1065-1072).
Wiegand M., Balahur A., Roth B., Klakow D., Montoyo
A. (2010). A survey on the role of negation in
sentiment analysis. In Proceedings of NeSp-NLP ’10,
pages 60–68.
Wilson T., Kozareva Z., Nakov P., Rosenthal S., Stoyanov
V., Ritter A. (2013). SemEval-2013 task 2: Sentiment
analysis in twitter. In Proceedings of the International
Workshop on Semantic Evaluation, SemEval 2013,
June.
Wilson, T., Wiebe, J., Hoffmann, P. (2005). Recognizing
contextual polarity in phrase-level sentiment analysis.
In Proceedings of the conference on human language
technology and empirical methods in natural language
processing (pp. 347-354).
Wilson, T., Wiebe, J., Hoffmann, P. (2009). Recognizing
contextual polarity: An exploration of features for
phrase-level sentiment analysis. Computational
linguistics, 35(3), 399-433.
UnsupervisedTwitterSentimentClassification
227