A Boltzmann Multivariate Estimation of Distribution Algorithm for Continuous Optimization

Ignacio Segovia-Domínguez, S. Ivvan Valdez, Arturo Hernández-Aguirre

2014

Abstract

This paper introduces an approach for continuous optimization using an Estimation of Distribution Algorithm (EDA), based on the Boltzmann distribution. When using the objective function as energy function, the Boltzmann function favors the most promising regions, making the probability exponentially proportional to the objective function. Using the Boltzmann distribution directly for sampling is not possible because it requires the computation of the objective function values in the complete search space. This work presents an approximation to the Boltzmann function by a multivariate Normal distribution. Formulae for computing the mean and covariance matrix are derived by minimizing the Kullback-Leibler divergence. The proposed EDA is competitive and often superior to similar algorithms as it is shown by statistical results reported here.

References

  1. Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience.
  2. Dong, W. and Yao, X. (2008). Unified Eigen analysis on multivariate Gaussian based estimation of distribution algorithms. Information Sciences, 178(15):215-247.
  3. Grahl, J., Bosman, P. A. N., and Minner, S. (2007). Convergence phases, variance trajectories, and runtime analysis of continuos EDAs. In GECCO 7807: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 516-522. ACM.
  4. Hu, J., Wang, Y., Zhou, E., Fu, M. C., and Marcus, S. I. (2012). A survey of some model-based methods for global optimization. In Optimization, Control, and Applications of Stochastic Systems, pages 157-179.
  5. Larran˜aga, P. (2002). A review on estimation of distribution algorithms. In Larran˜aga, P. and Lozano, J., editors, Estimation of Distribution Algorithms, volume 2 of Genetic Algorithms and Evolutionary Computation, pages 57-100. Springer US.
  6. Larran˜aga, P., Etxeberria, R., Lozano, J. A., and Pen˜a, J. M. (2000). Optimization in continuous domains by learning and simulation of gaussian networks. Technical Report EHU-KZAA-IK-4/99, University of the Basque Country.
  7. Mahnig, T. and Muhlenbein, H. (2001). A new adaptive boltzmann selection schedule sds. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, volume 1, pages 183-190. IEEE.
  8. Müehlenbein1, H., Bendisch1, J., and Voight2, H.-M. (1996). From recombination of genes to the estimation of distributions ii. continuous parameters.
  9. Mühlenbein, H. (2012). Convergence theorems of estimation of distribution algorithms. In Shakya, S. and Santana, R., editors, Markov Networks in Evolutionary Computation, volume 14 of Adaptation, Learning, and Optimization, pages 91-108. Springer Berlin Heidelberg.
  10. Muhlenbein, H. and Mahnig, T. (1999). The factorized distribution algorithm for additively decomposed functions. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 1. IEEE.
  11. Mühlenbein, H., Mahnig, T., and Rodriguez, A. O. (1999). Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5(2):215-247.
  12. Mühlenbein, H., Mahnig, T., and Rodriguez, A. O. (1999). Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5(2):215-247.
  13. Ochoa, A. (2010). Opportunities for expensive optimization with estimation of distribution algorithms. In Computational Intelligence in Expensive Optimization Problems, volume 2, pages 193-218. Springer.
  14. Segovia-Dominguez, I., Hernandez-Aguirre, A., and Diharce, E. V. (2013). The gaussian polytree eda with copula functions and mutations. In EVOLVE, volume 447 of Studies in Computational Intelligence, pages 123-153. Springer Berlin Heidelberg.
  15. Shapiro, J. L. (2006). Diversity loss in general estimation of distribution algorithms. In Parallel Problem Solving from Nature-PPSN IX, pages 92-101. Springer.
  16. Valdez, S. I., Hernández, A., and Botello, S. (2013). A boltzmann based estimation of distribution algorithm. Information Sciences, 236:126-137.
  17. Yunpeng, C., Xiaomin, S., and Peifa, J. (2006). Probabilistic modeling for continuous eda with boltzmann selection and kullback-leibeler divergence. In Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 389-396. ACM.
Download


Paper Citation


in Harvard Style

Segovia-Domínguez I., Valdez S. and Hernández-Aguirre A. (2014). A Boltzmann Multivariate Estimation of Distribution Algorithm for Continuous Optimization . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 251-258. DOI: 10.5220/0005079902510258


in Bibtex Style

@conference{ecta14,
author={Ignacio Segovia-Domínguez and S. Ivvan Valdez and Arturo Hernández-Aguirre},
title={A Boltzmann Multivariate Estimation of Distribution Algorithm for Continuous Optimization},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},
year={2014},
pages={251-258},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005079902510258},
isbn={978-989-758-052-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - A Boltzmann Multivariate Estimation of Distribution Algorithm for Continuous Optimization
SN - 978-989-758-052-9
AU - Segovia-Domínguez I.
AU - Valdez S.
AU - Hernández-Aguirre A.
PY - 2014
SP - 251
EP - 258
DO - 10.5220/0005079902510258