ACKNOWLEDGEMENTS
The support of the ESF project 2013/0024/1DP/
1.1.1.2.0/13/APIA/VIAA/045 is kindly announced.
REFERENCES
Birkhoff, G . Lattice Theory, AMS Providence, RI, (1995)
Brown, L.M., Ert¨urk, R. Dost S¸. Ditopological texture
spaces and fuzzy topology, I. Basic concepts, Fuzzy
Sets and Syst. 110, 227–236 (2000).
Ciucci, D. Approximation algebra and framework, Fund.
Inform. 94(2) (2009) 147–161.
Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl.
24, 182–190 (1968)
Chen, P., Zhang, D. Alexandroff L-cotopological spaces,
Fuzzy Sets and Systems 161 (2010) 2505 – 2514.
Ciucci, D. Approximation algebra and framework, Fund.
Inform. 94(2) (2009) 147–161.
Gierz, G., Hoffman, K.H., Keimel, K., Lawson, J.D., Mis-
love, M.W., Scott, D.S. Continuous Lattices and Do-
mains, Cambridge Univ. Press, Cambridge, 2003
Goguen, J.A. The fuzzy Tychonoff theorem, J. Math. Anal.
Appl. 43 (1973) 734–742.
Dubois, D., Prade, H. Rough fuzzy sets and fuzzy rough
sets, International J. General Systems 17 (2–3) (1990)
191–209.
El¸kins, A.,
ˇ
Sostak, A. On some categories of approximate
systems generated by L-relations. In: 3
rd
Rough Sets
Theory Workshop, pp. 14–19 Milan, Italy (2011)
Hao J., Li Q. The relation between L-fuzzy rough sets and
L-topology, Fuzzy Sets and Systems, 178 (2011)
H¨ohle U. Commutative residuated l-monoids, in: U. H¨ohle
abd E.P. Klement eds., Nonclassical Logics and their
Appl. to Fuzzy Subsets, 53–106, Kluwer Acad. Publ.,
Docrecht, Boston, 1995.
J¨arvinen J. On the structure of rough approximations, Fund.
Inform. 53 (2002) 135–153.
J¨arvinen J., Kortelainen J. A unified study between modal-
like operators, topologies and Fuzzy Sets, Fuzzy Sets
and Systems 158 (2007) 1217–1225.
Kaufman A. Theory of Fuzzy Subsets, Academic Press,
New York, 1975.
Klement, E.P., Mesiar, R., Pap, E. Triangular Norms.
Kluwer Acad. Publ. (2000)
Kortelainen J. On relationship between modified sets, topo-
logical spaces and rough sets, Fuzzy Sets and Systems
61 (1994) 91-95.
Kubiak T. On fuzzy topologies, PhD Thesis, Adam Mick-
iewicz University Poznan, Poland (1985)
Menger K. Geometry and positivism - a probabilistic mi-
crogeometry, Selected Papers in Logic, Foundations,
Didactics, Economics, Reidel, Dodrecht, 1979.
Mi J.S., Hu B.Q. Topological and lattice structure of L-
fuzzy rough stes determined by upper and lower sets,
Information Sciences 218 (2013) 194–204.
Pawlak, Z. Rough sets, Intern. J. of Computer and Inform.
Sci. 11, 341–356 (1982)
Qin K., Pei Z. On the topological properties of fuzzy rough
sets, Fuzzy Sets and Systems 151 (2005) 601–613.
Qin K., Pei Z. Generalized rough sets based on reflexive and
transitive relations, Information Sciences 178 (2008)
4138–4141.
Radzikowska, A.M., Kerre, E.E. A comparative study of
fuzzy rough sets. Fuzzy Sets and Syst. 126, 137–155
(2002)
Rosenthal, K.I. Quantales and Their Applications. Pirman
Research Notes in Mathematics 234. Longman Scien-
tific & Technical (1990)
Schweitzer, B., Sklar, A. Probabilistic Metric Spaces. North
Holland, New York (1983).
ˇ
Sostak, A. On a fuzzy topological structure, Suppl. Rend.
Circ. Matem. Palermo, Ser II 11, 125–186 (1980).
Russian Math. Surveys 44 (1989) 125–186
ˇ
Sostak, A. Two decades of fuzzy topology: Basic ideas,
notions and results, Russian Math. Surveys 44 (1989)
125–186
ˇ
Sostak, A. Basic structures of fuzzy topology, J. Math. Sci.
78 (1996) 662–701.
ˇ
Sostak A. Towards the theory of M-approximate systems:
Fundamentals and examples. Fuzzy Sets and Syst.
161, 2440–2461 (2010)
ˇ
Sostak, A. Towards the theory of approximate sys-
tems: variable range categories. In: Proceedings of
ICTA2011, Islamabad, Pakistan. pp. 265–284. Cam-
bridge University Publ. (2012)
Tiwari, S.P., Srivastava, A.K. Fuzzy rough sets. fuzzy pre-
oders and fuzzy topoloiges, Fuzzy Sets and Syst., 210
(2013), 63–68.
Valverde, L. On the structure of F-indistinguishability op-
erators, Fuzzy Sets and Syst. 17, 313–328 (1985)
Yao, Y.Y. A comparative study of fuzzy sets and rough sets.
Inf. Sci. 109, 227–242 (1998)
Yao, Y.Y. On generalizing Pawlak approximation opera-
tors. In: Proc. First Intern. Conf. Rough Sets and Cur-
rent Trends in Computing. pp. 298–307 (1998)
Yu H., Zhan W.R. On the topological properties of gener-
alized rough sets, Information Sciences 263 (2014),
141–152.
Zadeh L. Similarity relations and fuzzy orderings, Inf. Sci.
3 (1971) 177–200.
MeasureofRoughnessforRoughApproximationofFuzzySetsandItsTopologicalInterpretation
67