ance technique. In
ˇ
Coh, M., editor, Biomechanical
Diagnostic Methods in Athletic Training, pages 109–
116. University of Ljubljana.
ˇ
Coh, M., Kostelic, J., and Pintaric, S. (1998). A biomechan-
ical model of the 100 m hurdles of brigita bukovec.
Track Coach, 142:4521–4529.
Deutscher, J. and Reid, I. (2005). Articulated body motion
capture by stochastic search. Int. J. Comput. Vision,
61(2):185–205.
Elliott, N., Choppin, S., Goodwill, S. R., and Allen, T.
(2014). Markerless tracking of tennis racket motion
using a camera. Procedia Engineering, 72(0):344 –
349. The Engineering of Sport 10.
Iskra, J. (2012). Scientific research in hurdle races. AWF
Katowice.
John, V., Trucco, E., and Ivekovic, S. (2010). Markerless
human articulated tracking using hierarchical particle
swarm optimisation. Image and Vision Computing,
28(11):1530–1547.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proc. of IEEE Int. Conf. on Neural Net-
works, volume 4, pages 1942–1948. IEEE Press, Pis-
cataway, NJ.
Krzeszowski, T., Kwolek, B., Michalczuk, A., witoski, A.,
and Josiski, H. (2012). View independent human gait
recognition using markerless 3d human motion cap-
ture. In Bolc, L., Tadeusiewicz, R., Chmielewski, L.,
and Wojciechowski, K., editors, Computer Vision and
Graphics, volume 7594 of Lecture Notes in Computer
Science, pages 491–500. Springer Berlin Heidelberg.
Kwolek, B., Krzeszowski, T., Gagalowicz, A., Woj-
ciechowski, K., and Josiski, H. (2012). Real-time
multi-view human motion tracking using particle
swarm optimization with resampling. In Perales, F. J.,
Fisher, R. B., and Moeslund, T. B., editors, Articu-
lated Motion and Deformable Objects, volume 7378
of Lecture Notes in Computer Science, pages 92–101.
Springer Berlin Heidelberg.
McDonald, C. (2003). The angular momentum of hurdle
clearance. Track Coach, 1(1):1–1.
Panagiotakis, C., Grinias, I., and Tziritas, G. (2006). Auto-
matic human motion analysis and action recognition
in athletics videos. In 14th European Signal Process-
ing Conf. Citeseer.
Per
ˇ
s, J. and Kovacic, S. (2000). A system for tracking
players in sports games by computer vision. Elek-
trotehni
ˇ
cni vestnik, 67(5):281–288.
Ramasso, E., Panagiotakis, C., Rombaut, M., Pellerin, D.,
Tziritas, G., et al. (2009). Human shape-motion analy-
sis in athletics videos for coarse to fine action/activity
recognition using transferable belief model. Elec-
tronic Letters on Computer Vision and Image Anal-
ysis, 7(4):32–50.
Salo, A., Grimshaw, P. N., and Marar, L. (1997). 3-d biome-
chanical analysis of sprint hurdles at different compet-
itive levels. Medicine and science in sports and exer-
cise, 29(2):231–237.
Sheets, A. L., Abrams, G. D., Corazza, S., Safran, M. R.,
and Andriacchi, T. P. (2011). Kinematics differences
between the flat, kick, and slice serves measured us-
ing a markerless motion capture method. Annals of
Biomedical Engineering, 39(12):3011–3020.
Sidenbladh, H., Black, M. J., and Fleet, D. J. (2000).
Stochastic tracking of 3d human figures using 2d im-
age motion. In In European Conf. on Computer Vi-
sion, pages 702–718.
Taki, T., Hasegawa, J., and Fukumura, T. (1996). Develop-
ment of motion analysis system for quantitative evalu-
ation of teamwork in soccer games. In Image Process-
ing, 1996. Proceedings., International Conference on,
volume 3, pages 815–818 vol.3.
Xian-jie, Q., Zhao-qi, W., and Shi-hong, X. (2004). A novel
computer vision technique used on sport video. In The
12th International Conference in Central Europe on
Computer Graphics. UNION Agency-Science Press.
Zivkovic, Z. and van der Heijden, F. (2006). Efficient
adaptive density estimation per image pixel for the
task of background subtraction. Pattern Recogn. Lett.,
27(7):773–780.
icSPORTS2014-InternationalCongressonSportSciencesResearchandTechnologySupport
136