Exercise Recovery
0.4 0.6 0.8 1
−1
−0.5
0
0.5
1
RR (s)
cosRT
svd
0.4 0.6 0.8 1
RR (s)
0.4 0.6 0.8 1
RR (s)
−1
−0.5
0
0.5
1
cosRT
dow
Figure 3: cosRT changes as a function of the RR-intercal during exercise and recovery periods are presented for all three
subjects. First row presents cosRT
dow
angles and second row cosRT
svd
angles. Estimated angle values during exercise are
marked as dark gray and during recovery period as light gray. cosRT values were divided into bins depending on current
RR-interval, mean±SD during exercise are shown in red and during recovery in blue lines.
torso’s volume conduction model. Both of these is-
sues cause changes into the ECG components and to
the estimated cosRT angles. Beat-by-beat estimation
methods are important, because the effects of respira-
tion can be better observed and when necessary can
be taken into account in the analysis, and thereby, the
reliability of the VECG parameters such as the cosRT
angle could be improved.
ACKNOWLEDGEMENTS
Study was supported by Kuopio University Hospital
VTR grant.
REFERENCES
Acar, B. and Koymen, H. (1999). Svd-based on-line exer-
cise ecg signal orthogonalization. Biomedical Engi-
neering, 46:311–321.
Dower, G., Machado, H., and Osborne, J. (1980). On de-
riving the electrocardiogram from vectoradiographic
leads. Clin Cardio, 3:87.
Edenbrandt, L. and Pahlm, O. (1988). Vectorcardiogram
synthesized from a 12-lead ecg: superiority of the
inverse dower matrix. Journal of electrocardiolog,
21:361–367.
Kardys, I., Kors, J. A., van der Meer, I. M., Hofman, A.,
van der Kuip, D. A., and Witteman, J. C. (2003). Spa-
tial qrs-t angle predicts cardiac death in a general pop-
ulation. European heart journal, 24:1357–1364.
Kentt¨a, T., Karsikas, M., J.Junttila, M., Perki¨om¨aki, J. S.,
Sepp¨anen, T., Kiviniemi, A., Nieminen, T., Lehtim¨aki,
T., Nikus, K., Lehtinen, R., Viik, J., K¨ah¨onen, M., and
Huikuri, H. V. (2011). Qrs-t morphology measured
from exercise electrocardiogram as a predictor of car-
diac mortality. Europace, 13:701–707.
Kentt¨a, T., Karsikas, M., Kiviniemi, A., Tulppo, M.,
Sepp¨anen, T., and Huikuri, H. V. (2010). Dynamics
and rate-dependence of the spatial angle between ven-
tricular depolarization and repolarization wave fronts
during exercise ecg. Annals of Noninvasive Electro-
cardiology, 15:264–275.
Kentt¨a, T., Viik, J., Karsikas, M., Sepp¨anen, T., Nieminen,
T., Lehtim¨aki, T., Nikus, K., Lehtinena, R., K¨ah¨onen,
M., and Huikuri, H. V. (2012). Postexercise recov-
ery of the spatial qrs/t angle as a predictor of sudden
cardiac death. Heart Rhythm, 9:1083–1089.
Lipponen, J. A., Gladwell, V. F., Kinnunen, H., Karjalainen,
P. A., and Tarvainen, M. P. (2013). The correlation of
vectorcardiographic changes to blood lactate concen-
tration during an exercise test. Signal Processing and
Control, 8:491–499.
Lipponen, J. A., Tarvainen, M. P., Laitinen, T., Lyyra-
Laitinen, T., and Karjalainen, P. A. (2010). A prin-
cipal component regression approach for estimation
of ventricular repolarization characteristics. Transac-
tions Biomedical Engineering, 57:1062–1069.
Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-
Aho, P. O., and Karjalainen, P. A. (2014). Kubios
hrvheart rate variability analysis software. Computer
methods and programs in biomedicine, 113:210–220.
Zabel, M., Acar, B., Klingenheben, T., Franz, M. R., Hohn-
loser, S. H., and Malik, M. (2000). Analysis of 12-
lead t-wave morphology for risk stratification after
myocardial infarction. Circulation, 102:1252–1257.
CARDIOTECHNIX2014-InternationalCongressonCardiovascularTechnologies
26