Particle Swarms with Dynamic Topologies and Conservation of Function Evaluations

Carlos M. Fernandes, Juan L. J. Laredo, Juan Julian Merelo, Carlos Cotta, Agostinho Rosa

2014

Abstract

This paper proposes a general framework for structuring dynamic Particle Swarm populations and uses a conservation of function evaluations strategy to increase the convergence speed. The population structure is constructed by placing the particles on a 2-dimensional grid of nodes, where they interact and move according to simple rules. During the running time of the algorithm, the von Neumann neighborhood is used to decide which particles influence each other when updating their velocity and position. Each particle is updated in each time-step but they are evaluated only if there are other particles in their neighborhood. A set of experiments demonstrates that the dynamics imposed by the structure provides a more consistent and stable behavior throughout the test set when compared to standard topologies, while the conservation of evaluations significantly reduces the convergence speed of the algorithm. Furthermore, the working mechanisms of the proposed structure are very simple and, except for the size of the grid, they do not require parameters and tuning.

References

  1. Fernandes, C. M., Laredo, J. L. J., Merelo, J. J., Cotta, C., Nogueras, R., Rosa, A.C. 2013. Performance and Scalability of Particle Swarms with Dynamic and Partially Connected Grid Topologies. In Proceedings of the 5th International Joint Conference on Computational Intelligence IJCCI 2013, pp. 47-55.
  2. Grassé, P.-P. 1959. La reconstrucion du nid et les coordinations interindividuelles chez bellicositermes et cubitermes sp. La théorie de la stigmergie: Essai d'interpretation du comportement des termites constructeurs, Insectes Sociaux, 6, pp. 41-80.
  3. Hseigh, S.-T., Sun, T.-Y, Liu, C.-C., Tsai, S.-J. 2009. Efficient Population Utilization Strategy for Particle Swarm Optimizers. IEEE Transactions on Systems, Man and Cybernetics-part B, 39(2), 444-456.
  4. Kennedy, J., Eberhart, R. 1995. Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks, Vol.4, 1942-1948.
  5. Kennedy, J., Mendes, R. 2002. Population structure and particle swarm performance. In Proceedings of the IEEE World Congress on Evolutionary Computation, 1671-1676.
  6. Landa-Becerra, R., Santana-Quintero, L. V., and Coello Coello, C. A. 2008. Knowledge incorporation in multiobjective evolutionary algorithms. In Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, pages 23-46.
  7. Liang, J. J., Qin, A. K., Suganthan, P.N., Baskar, S. 2006. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evolutionary Computation, 10(3), 281-296.
  8. Majercik, S. 2013. GREEN-PSO: Conserving Function Evaluations in Particle Swarm Optimization, in Proceedings of the IJCCI 2013 - International Joint Conference on Computational Intelligence, pp.160- 167, 2013.
  9. Parsopoulos, K. E., Vrahatis, M. N. 2004. UPSO: A Unified Particle Swarm Optimization Scheme, Lecture Series on Computer and Computational Sciences, Vol. 1, Proceedings of the International Conference of "Computational Methods in Sciences and Engineering" (ICCMSE 2004), 868-87
  10. Peram, T., Veeramachaneni, K., Mohan, C.K. 2003. Fitness-distance-ratio based particle swarm optimization. In Proc. Swarm Intelligence Symposium SIS'03, IEEE, pp. 174-181.
  11. Reyes-Sierra, M. and Coello Coello, C. A. (2007). A study of techniques to improve the efficiency of a multiobjective particle swarm optimizer. In Studies in Computational Intelligence (51), Evolutionary Computation in Dynamic and Uncertain Environments, pages 269-296.
  12. Shi, Y, Eberhart, R.C. 1998. A Modified Particle Swarm Optimizer. In Proceedings of IEEE 1998 International Conference on Evolutionary Computation, IEEE Press, 69-73.
  13. Trelea, I. C. 2003. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters, 85, 317- 325.
Download


Paper Citation


in Harvard Style

Fernandes C., Laredo J., Merelo J., Cotta C. and Rosa A. (2014). Particle Swarms with Dynamic Topologies and Conservation of Function Evaluations . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 86-94. DOI: 10.5220/0005087900860094


in Bibtex Style

@conference{ecta14,
author={Carlos M. Fernandes and Juan L. J. Laredo and Juan Julian Merelo and Carlos Cotta and Agostinho Rosa},
title={Particle Swarms with Dynamic Topologies and Conservation of Function Evaluations},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},
year={2014},
pages={86-94},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005087900860094},
isbn={978-989-758-052-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - Particle Swarms with Dynamic Topologies and Conservation of Function Evaluations
SN - 978-989-758-052-9
AU - Fernandes C.
AU - Laredo J.
AU - Merelo J.
AU - Cotta C.
AU - Rosa A.
PY - 2014
SP - 86
EP - 94
DO - 10.5220/0005087900860094