Neuron Dynamics of Two-compartment Traub Model for Hardware-based Emulation

Juan Carlos Moctezuma, Jose Luis Nunez-Yanez, Joseph P. McGeehan

2014

Abstract

The two-compartment Pinsky and Rinzel version of the Traub model offers a suitable solution for hardware-based emulation, since it has a good trade-off between biophysical accuracy and computational resources. Many applications based on conductance-based models require a proper characterization of the neuron behaviour in terms of its parameters, such as tuning firing parameters, changing parameters during learning processes, replication and analysis of neuron recordings, etc. This work presents a study of the dynamics of such model especially suitable for hardware-based development. The morphology of the neuron is taken into account while the analysis focuses primarily on the relation between the firing/bursting properties and the relevant parameters of the model, such as current applied and morphology of the cell. Two different applied currents were considered: short duration and long steady. Seven different types of burst patterns were detected and analysed. The transformation process of the membrane voltage when a long steady current varies was classified into five stages. Finally, examples of neuron recording replication using the present methodology are developed.

References

  1. Booth, V. and A. Bose (2002). "Burst synchrony patterns in hippocampal pyramidal cell model networks." Network 13(2): 157-177.
  2. Bower, J. M. and D. Beeman (1998). "The book of GENESIS." Springer-Verlag New York, Inc.
  3. Coombes, S. and P. C. Bressloff (2005). Bursting The Genesis of Rhythm in the Nervous System, world Scientific Printers.
  4. Dayan, P. and L. F. Abbott (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems, MIT.
  5. Fei, X. Y., Jiangwang and L. Q. Chen (2006). "Bifurcation control of Hodgkin-Huxley model of nerve system." WCICA 2006: Sixth World Congress on Intelligent Control and Automation, Vols 1-12, 9406-9410.
  6. Feng, J. F. and G. B. Li (2001). "Behaviour of twocompartment models." Neurocomputing 38: 205-211.
  7. Grzywacz, N. M. and P.-Y. Burgi (1998). "Toward a Biophysically Plausible Bidirectional Hebbian Rule." Neural Computation 10(3): 499-520.
  8. Guckenheimer, J. and I. S. Labouriau (1993). "Bifurcation of the Hodgkin and Huxley Equations - a New Twist." Bulletin of Mathematical Biology 55(5): 937-952.
  9. Hodgkin, A. L. and A. F. Huxley (1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve." J Physiol 117(4): 500-544.
  10. Jiang, W., G. Jianming and F. Xiangyang (2005). "Twoparameter Hopf bifurcation in the Hodgkin-Huxley model." Chaos, Solitons & Fractals 23: 973-980.
  11. Kepecs, A. and X. J. Wang (2000). "Analysis of complex bursting in cortical pyramidal neuron models." Neurocomputing 32: 181-187.
  12. Khan, G. M. and J. F. Miller (2010). "Learning Games using a Single Developmental Neuron." Proc. of the Alife XII Conference(University of York).
  13. Moctezuma, J. C., J. P. McGeehan and J. L. Nunez-Yanez (2013). Numerically efficient and biophysically accurate neuroprocessing platform. Reconfigurable Computing and FPGAs (ReConFig), 2013.
  14. Pinsky, P. F. and J. Rinzel (1995). "Intrinsic and network rhythmogenesis in a reduced Traub model for Ca3 neurons." Journal of Computational Neuroscience 2(3): 275-275.
  15. Rinzel, J. and R. N. Miller (1980). "Numerical-Calculation of Stable and Unstable Periodic-Solutions to the Hodgkin-Huxley Equations." Mathematical Biosciences 49(1-2): 27-59.
  16. Schwartzkroin, P. A. (1975). "Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation." Brain Res 85(3): 423-436.
  17. Smaragdos, G., S. Isaza, M. F. v. Eijk, I. Sourdis and C. Strydis89-98 (2014). "FPGA-based biophysicallymeaningful modeling of olivocerebellar neurons". ACM/SIGDA international symposium on FPGAs. Monterey, California, USA, ACM: 89-98.
  18. Traub, R. D. (1982). "Simulation of intrinsic bursting in CA3 hippocampal neurons." Neuroscience 7(5): 1233- 1242.
  19. Traub, R. D., J. G. Jefferys, R. Miles, M. A. Whittington and K. Toth (1994). "A branching dendritic model of a rodent CA3 pyramidal neurone." J Physiol 481 ( Pt 1): 79-95.
  20. Traub, R. D., R. K. Wong, R. Miles and H. Michelson (1991). "A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances." J Neurophysiol 66(2): 635-650.
  21. Wang, J., J. M. Geng and X. Y. Fei (2005). "Twoparameters Hopf bifurcation in the Hodgkin-Huxley model." Chaos Solitons & Fractals 23(3): 973-980.
  22. Wang, L., S. Liu, J. Zhang and Y. Zeng (2012). "Burst firing transitions in two-compartment pyramidal neuron induced by the perturbation of membrane capacitance." Neurol Sci 33(3): 595-604.
  23. Zhang, Y., J. Nunez and J. McGeehan (2010). "Biophysically Accurate Floating Point Neuroprocessors." University of Bristol.
Download


Paper Citation


in Harvard Style

Carlos Moctezuma J., Luis Nunez-Yanez J. and P. McGeehan J. (2014). Neuron Dynamics of Two-compartment Traub Model for Hardware-based Emulation . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 85-93. DOI: 10.5220/0005089500850093


in Bibtex Style

@conference{ncta14,
author={Juan Carlos Moctezuma and Jose Luis Nunez-Yanez and Joseph P. McGeehan},
title={Neuron Dynamics of Two-compartment Traub Model for Hardware-based Emulation},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={85-93},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005089500850093},
isbn={978-989-758-054-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - Neuron Dynamics of Two-compartment Traub Model for Hardware-based Emulation
SN - 978-989-758-054-3
AU - Carlos Moctezuma J.
AU - Luis Nunez-Yanez J.
AU - P. McGeehan J.
PY - 2014
SP - 85
EP - 93
DO - 10.5220/0005089500850093