
EEG and Eye-Tracking Integration for Ocular Artefact Correction 

P. Rente Lourenço1, W. W. Abbott1 and A. A. Faisal1,2 

1Department of Bioengineering, Brain and Behaviour Lab, Imperial College London, Exhibition Road, London, U.K. 
2Department of Computing, Brain and Behaviour Lab, Imperial College London, Exhibition Road, London, U.K. 

Keywords: EEG, Eye-Tracking, Ocular Artefacts, ICA, Wiener Filter, Wavelet Decomposition. 

Abstract: Electroencephalograms (EEG) are a widely used brain signal recording technique. The information 
conveyed in these recordings can be an extremely useful tool in the diagnosis of some diseases and 
disturbances, as well as in the development of non-invasive Brain-Machine Interfaces (BMI). However, the 
non-invasive electrical recording setup comes with two major downsides, a. poor signal-to-noise ratio and b. 
the vulnerability to any external and internal noise sources. One of the main sources of artefacts are eye 
movements due to the electric dipole between the cornea and the retina. We have previously proposed that 
monitoring eye-movements provide a complementary signal for BMIs. He we propose a novel technique to 
remove eye-related artefacts from the EEG recordings. We couple Eye Tracking with EEG allowing us to 
independently measure when ocular artefact events occur and thus clean them up in a targeted manner 
instead of using a “blind” artefact clean up correction technique. Three standard methods of artefact 
correction were applied in an event-driven, supervised manner: 1. Independent Components Analysis (ICA), 
2. Wiener Filter and 3. Wavelet Decomposition and compared to “blind” unsupervised ICA clean up. These 
are standard artefact correction approaches implemented in many toolboxes and experimental EEG systems 
and could easily be applied by their users in an event-driven manner. Already the qualitative inspection of 
the clean up traces show that the simple targeted artefact event-driven clean up outperforms the traditional 
“blind” clean up approaches. We conclude that this justifies the small extra effort of performing 
simultaneous eye tracking with any EEG recording to enable simple, but targeted, automatic artefact 
removal that preserves more of the original signal. 

1 INTRODUCTION 

Electroencephalogram (EEG) recordings are widely 
used nowadays for different neurological 
applications, such as diagnosis of epilepsy or sleep 
disorders, or brain machine interfaces. (Iber, Ancoli-
Israel, Chesson., et al., 2007; Giannitrapani and 
Kayton, 1974; Saatchi, Oke, Allen, et al., 1995). The 
EEG trace is known to be highly variable, in part 
due to transient physiological conditions and state of 
the brain as well as noise inside the nervous system 
(e.g. Faisal, 2010, Sengupta et al, 2013, Neishaborui 
and Faisal , 2014; for general overview see Faisal et 
al., 2008) but mainly due to noise and artefacts from 
any kind of non-neuronal genereated electro-
magnetic fields. Noise artefacts are caused by 
external (e.g. AC line noise, mobile phones, electric 
motors) or biological electromagnetic activity from 
muscle contractions of the face and the eyes, as well 
as movement of the eye-ball itself. Ocular artefacts 

are most relevant since the influence of the eye 
dipole (potential difference between the Retinal 
Pigment Epithelium and the cornea) in the recording 
is very high, due to the proximity to the electrodes. 
The influence of eye blinks specifically is very high 
as it causes a large change in the signal, both due to 
the influence of the eye lid and the reflex rotation of 
the eye ball downwards and inwards (Iwasaki, 
Kellinghaus, Alexopoulos, et al., 2005). 

Eye Tracking technology, and mostly the video-
based recording of eye gaze, have recently become 
by a factor of up to 1,000 less costly (Abbott and 
Faisal, 2012) and rapid “walk-up” calibration 
(Abbott et al, 2013) is enabling this technology to be 
more widely used in several applications (e.g. 
medical diagnostics or robotic control). Moreover, 
video-based eye tracking is not affected by external 
electrical fields and as such is independent from 
EEG noise sources. 

Most of the current approaches to Ocular
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Artefact removal are “blind” and include removal of 
blink regions (Yoo, Basa and Lee, 2007), wavelet 
decomposition (Kumar, Arumuganathan, 
Sivakumar, et al., 2008), Independent Components 
Analysis (Vigário, 1997) or use Electrooculogram 
recordings (EOG) to then subtract this from the EEG 
(Jervis, Coelho and Morgan, 1989). “Blind” 
approaches have the downfall of the artefact removal 
being performed generically to the whole signal, so 
there is a step in identifying what is and what is not 
an artefact, which is prone to error. By having an 
eye tracking recording we eliminate this error and 
are sure of when an artefact is ocurring. Moreover, it 
enables the specific ocular artefacts to be 
characterised for use in other removal approaches, 
such as the Wiener filter. 

In this study we use the Eye Tracking 
information to detect regions of Ocular Artefacts and 
use that to perform local correction, thus minimizing 
the influence of the corrective measures in the rest of 
the signal. This will provide a non corrupted but 
clean signal, that can then be used in EEG 
applications such as Brain Machine Interfaces or 
Medical Diagnosis.  

2 METHODS 

A simple gaze fixation protocol was used to record 
EEG and Eye-tracking signals simultaneously. 
Subjects were instructed to stare at a white dot 
presented on a screen without moving their head. No 
instructions were given regarding blinking, allowing 
the subjects to blink freely. Figure 1 represents the 
experimental setup. 

 

Eye Tracking was performed with an SMI Red-
m Eye Tracker (SensoMotoric Instruments GmbH, 
Teltow, Germany), a binocular, remotely mounted 
Eye Tracker. EEG data was collected with a 
BrainProducts ActiCHamp amplifier and a 32 
active-electrode set with an ActiCap (Brain Products 
GmbH, Gilching, Germany). Eye Tracking was 
performed at 120 Hz and EEG recordings were 
sampled at 500 Hz. Impedance of Electrodes against 
the skin was reduced to levels always below 15 kΩ, 
to ensure EEG signal quality. Eye Tracking was 
performed at a distance of 50-70 cm from the 
cameras. 

The EEG data was then pre-processed by a 
bandpass filter between 0.1-50 Hz, resampled to 120 
Hz and Common Average Re-referenced. Eye Gaze 
data (retrieved from the Eye Tracker) was used to 
find blink regions and extract blink markers.  

 

Figure 1: Experimental Setup. 1 is the Eye Tracker, 2 is 
the stimuli screen and 3 is the electrode cap. 

2.1 Experimental Setup 

The task was set up in Matlab with the help of the 
PsychoPhysics Toolbox (Brainard, 1997). 
Participants were asked to sit at a distance of 50-70 
cm from the Eye Tracker and Monitor, to ensure 
tracking (as per the Eye Tracker’s technical 
information sheet). Time to relax was given to 
patients while performing the setup of the EEG 
apparatus and participants were instructed to sit 
comfortably and focus only on the screen. External 
interference was minimized to avoid distractions that 
could result in inadvertent saccadic movements. 

Data was collected from 12 subjects with an 
average age of 25 years. 

2.2 Analysis Methods 

Several methods were studied in order to find the 
most suitable for ocular artefact correction, 
including Independent Components Analysis (ICA), 
Wavelet Decomposition and Wiener Filtering. The 
traces resulting from these methods were then 
analysed and compared. 

2.2.1 Independent Components Analysis 

ICA is an algorithm that maximizes the 
independence of different components of a signal by 
finding a linear coordinate system that creates 
signals that are statistically independent (Lee, 1998). 
ICA is used for Blind Source Separation. As ocular 
artefacts do not correspond to neural activity (i.e. 
they have a different source), ICA seemed a suitable 
approach to ocular artefact correction in EEG 
signals. 

The ICA algorithm used is present in the 
EEGLAB toolbox for Matlab and uses the infomax 
learning rule (Bell and Sejnowski, 1995). This rule 

1

2
3

NEUROTECHNIX�2014�-�International�Congress�on�Neurotechnology,�Electronics�and�Informatics

80



 

minimizes the mutual information in the components 
in the output, thus maximizing their statistical 
independence. 

The original infomax condition fails to separate 
sub-Gaussian sources due to the sigmoid function 
used; a solution to this problem was proposed by 
Bell and Sejnowski and consisted of a flexible 
sigmoid function (Bell and Sejnowski, 1995), but 
empirical results have shown that sometimes it is not 
possible to find independent components with this 
approach, alongside it being highly demanding in 
terms of computational load.  

To evaluate the Gaussianity of a distribution, a 
measure of its kurtosis can be used. Kurtosis is 
defined as the 4th order cumulant and gives a 
measure of the shape of a distribution. A cumulant is 
used to describe and in some cases approximate a 
normal distribution; these are similar to moments in 
the sense that two distributions with identical 
moments will also have identical cumulants. 

To overcome the problems of the original rule 
proposed by Bell and Sejnowski, an extended 
version of their algorithm was created: in this 
version the algorithm switches according to the 
kurtosis of the distribution of the data points. This 
means that according to the sign of the kurtosis, the 
learning rule is updated and this way it is possible to 
overcome the original problem. Simulations run on 
datasets with multiple sources and a variety of sub- 
and super-Gaussian distributions show that this 
extended version of the infomax algorithm is able to 
separate the sources (Lee, Girolami and Sejnowski, 
1999). 

The original learning rule with a natural gradient 
is defined as (Bell and Sejnowski, 1995): 
 

∆ܹ	 ∝ 	 ሺܫ െ tanhሺݑሻ ൈ	ݑᇱሻ 	ൈ 	ܹ (1) 
 

where ݑ represents the estimated sources, ܫ denotes 
the identity matrix and ݑ ൌ ܹ	 ൈ  being the ݔ ,ݔ	
mixed components signals. The extended learning 
rule, proposed in (Lee, Girolami and Sejnowski, 
1999) is defined as: 
 

∆ܹ	 ∝ 	 ሾܫ െ ܭ tanhሺݑሻ ᇱݑ െ  ሿ (2)′ݑݑ
 

where ݇௜ are elements of the N-dimensional 
diagonal matrix ܭ. This matrix is related to the 
kurtosis of the data, so if ݇௜ ൌ െ1 the data is sub-
Gaussian and if ݇௜ ൌ 1 the data is super-Gaussian. 

2.2.2 Wiener Filter 

The Wiener Filter approach creates an optimal linear 
filter based on the signal and noise power spectra, as 
stated in the equation: 

ሺ݊ሻݕ ൌ ሺ݊ሻݔ	 ൅ 	߱ሺ݊ሻ (3) 

where ݔሺ݊ሻ is the EEG neural signal and ߱ሺ݊ሻ is the 
ocular artefact (both in time domain). Since we can 
retrieve the artefact positions in the signal through 
the Eye Tracker, an “average artefact” can be 
obtained by averaging the signal pieces that contain 
an artefact, and thus the Wiener Filter kernel can be 
calculated and applied to the signal. 

Let’s assume that ݔሺ݊ሻ and ߱ሺ݊ሻ are stationary 
and uncorrelated – a valid assumption, considering 
these signals have different origins and therefore 
should not have any strong correlation. This can be 
translated into the fact that the expectation is zero: 

. 
,ሺ݊ሻݔሾܧ ߱ሺ݊ሻሿ ൌ 	0 (4) 

 

The goal is to find an optimal filter that 
minimizes the error between the signal ݔሺ݊ሻ and the 
estimated signal ݔොሺ݊ሻ: 
 

min ቀܧ ቂ൫ݔሺ݊ሻ െ	ݔොሺ݊ሻ൯
ଶ
ቃቁ (5) 

 

and 
 

ොሺ݊ሻݔ ൌ ݃ሺ݊ሻ ∗  ሺ݊ሻ (6)ݕ	
 

where ݃ሺ݊ሻ denotes the filter and ∗ represents 
convolution. By using the orthogonality principle 
(Papoulis and Pillai, 2002) it is possible to obtain the 
filter that minimizes the mean square error: 
 

,ሾ݁ሺ݊ሻܧ ሺ݊ሻሿݕ ൌ ሺ݊ሻݔ൫ൣܧ െ	ݔොሺ݊ሻ൯, ሺ݊ሻ൧ݕ
ൌ ,ሺ݊ሻݔሾܧ ሺ݊ሻሿݔ െ 	݃ሺ݊ሻ
∗ ,ሺ݊ሻݕሾܧ ሺ݊ሻሿݕ ൌ 	0 

(7) 

 

When converted to Fourier Space, the above 
equation will turn into an algebraic equation: 
 

ሺ߱ሻܩ ൌ ௫ܲሺ߱ሻ

௫ܲሺ߱ሻ ൅	 ௪ܲሺ߱ሻ
 (8) 

 

where ௫ܲሺ߱ሻ represents the power spectral density 
of the signal (with no artefacts), ௪ܲሺ߱ሻ is the power 
spectral density of the artefact extracted and ܩሺ߱ሻ is 
the filter function. ௫ܲሺ߱ሻ and ௪ܲሺ߱ሻ were computed 
by extracting a mean artefact and mean clean signal 
and then calculating the power spectral density of 
each. 

After the computation of this filter function and 
in order to apply it to the whole signal, either the 
filter function has to be inversely transformed to be 
in a time basis or the signal has to be transformed to 
be in Fourier space. The signal is then convolved 
(time) or multiplied (Fourier) with the filter and the 
noise should be removed. 

2.2.3 Wavelet Decomposition 

Wavelets and wavelet decomposition are tools used 
in signal processing to analyse, correct and 
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characterize signals. Wavelet functions define the 
basis over which the signal is going to be 
decomposed. 

From the several different types of wavelets in 
existence in signal processing it is possible to choose 
some whose properties adjust better to a specific 
purpose or case. In the case of artefact correction, 
wavelets that mimic the artefact will be more 
suitable, since the coefficients of the transform will 
be higher in the artefact zones. 

The Discrete Wavelet Transform (DWT) consists 
of the decomposition of a signal into a wavelet basis, 
thus attributing coefficients that relate the signal to 
the wavelet form. The main equation that describes 
this process is (Kumar, Arumuganathan, Sivakumar, 
et al., 2008): 
 

Ψ௝,௞ሺݐሻ ൌ 	2
௝
ଶൗ Ψሺ2௝ݐ െ ݇ሻ (9) 

 

where Ψ represents the wavelet function. The 
process of obtaining the wavelet coefficients of a 
signal can be performed at different levels, each one 
of them defined by the binary decimation factor ु଴ 
(Nason and Silverman, 1995): 
 

ሺु଴ݔሻ௝ ൌ  ଶ௝ (10)ݔ
 

where ݔ represents the signal. This implies that ु଴ 
chooses every even number of a sequence.  

The main issue of the Discrete Wavelet 
Transform (DWT) is that it is not time-invariant, and 
thus the translation invariance property is lost, i.e. 
the translated DWT of a signal is not the same as the 
DWT of a translated signal. 

Stationary Wavelet transform is a variation of the 
usual Discrete Wavelet transform. The advantage 
relies on the independence of the choice of origin for 
the wavelets, which is achieved by applying 
appropriate high and low pass filters to the data at 
each level, thus producing two sequences at the next 
level. This way there is no decimation, instead the 
filters are changing at each level by zero-padding in 
a well-defined way. The details of the filter 
adaptation are described in (Nason and Silverman, 
1995). The Stationary Wavelet Transform (SWT) 
contains the coefficients of the Discrete Wavelet 
Transform but shifted according to the choice of the 
origin of DWT. There is no restriction on the 
localisation as the stationary wavelet transform fills 
the gaps between coefficients in decimated DWT 
(Nason and Silverman, 1995). 

In the case of artefact correction of the EEG, 
(Kumar, Arumuganathan, Sivakumar, et al., 
2008)show a simple way to correct the eye blink 
artefacts from the EEG using Stationary Wavelet 
Transforms and Symlet Wavelets (part of the. 
 

 

Figure 2: EEG recording. Different colours represent 
different channels; the spikes in the signal are blink 
artefacts. 

 

Figure 3: Average Blink for one subject. The artefact 
extracted is quite large and thus can influence the use of 
the data. 

Daubechies (Daubechies, 1990) family) of level 3. 
In this paper they show a method to correct the 
artefacts with a simple threshold of the wavelet 
coefficients. 

3 RESULTS 

In order to visualize the influence of the artefacts in 
the signal, all 31 channels of the recording are 
shown in Figure 2. The same recording is shown in 
this paper for the sake of comparison, and it is only 
illustrative of the data collected. 
The Eye Tracker data was aligned with the EEG 
recording and thresholded to yield a set of artefact 
markers. The extraction and average of blink 
artefacts through the use of these markers is 
represented in Figure 3. 

Event-driven Independent Components Analysis: 

ICA was applied to 1500 points in the data around 
the artefact; 30 channels were used to guarantee full-
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rank data. After projection of Independent 
Components to the original data space, Artefact 
components were identified and subtracted from the 
data. The result is shown in Figure 4 and Figure 5. 
 

 

Figure 4: Top: EEG signal before artefact correction; 
Bottom: Same signal after correction of artefacts with 
ICA. The artefacts that correspond to the spikes in the 
upper plot are reduced in the bottom plot. The black 
window represents the region that was zoomed for the 
detail plot in Figure 5. 

 

Figure 5: Detail plot of two blink artefacts. Top: before 
correction; Bottom: after correction with ICA. 

Event-driven Wiener Filtering: 

To calculate the filter kernel, the EEG signal with 
the artefacts and without artefacts was separated and 
averaged; both signals were zero-padded to the 
length of the signal and the power spectral density 
was calculated and then used in the filter function 
calculation (Izzetoglu, Devaraj, Bunce, et al., 2005; 
Kailath, Sayed and Hassibi, 2000; Jingdong Chen, 
Benesty, Yiteng Huang, et al., 2006). The result of 
the filtering is shown in Figure 6 and Figure 7. 
 

 

Figure 6: EEG signal before and after correction of 
artefacts with Wiener filter. Top: signal before artefact 
correction; Bottom: signal after artefact correction. The 
black window represents the region of the signal that is 
zoomed in the detail plot (Figure 7). 

 

Figure 7: Detail plot of the EEG signal. Top: signal before 
artefact correction; Bottom: signal after artefact correction 
with Wiener filter. 

Event driven Wavelet Decomposition: 

 

Figure 8: EEG signal before and after correction of 
artefacts with Wavelet Decomposition. Top: signal before 
artefact correction; Bottom: signal after artefact 
correction. The black window indicates the region of the 
signal that is zoomed in the detail plot (Figure 9). 
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Figure 9: Detail plot of the EEG signal. Top: signal before 
artefact correction; Bottom: signal after artefact correction 
with Wavelet Decomposition. 

Stationary wavelet decomposition was used to 
correct the artefact; Symlet wavelets were chosen 
due to their resemblance to the ocular artefact 
(Kumar, Arumuganathan, Sivakumar, et al., 2008) 
and 8 levels of decomposition were applied to 1500 
data points around the ocular artefact. Figure 8 and 
Figure 9 show the results of this method. 

“Blind” Independent Components Analysis: 

Another method applied to the data in order to prove 
the pertinence of our methods, was a standard ICA 
clean up, where we have a sliding window over the 
data, calculating Independent Components and 
eliminating those that resemble an artefact. This 
approach is blind and as such has no knowledge of 
how a blink artefact looks like or even their 
locations. Results are shown in Figure 10 and Figure 
11. 
 

 

Figure 10: EEG signal before and after correction of 
artefacts with Blind ICA. Top: signal before artefact 
correction; Bottom: signal after artefact correction. The 
black window indicates the region of the signal that is 
zoomed in the detail plot (Figure 9). 

 

Figure 11: Detail plot of the EEG signal. Top: signal 
before artefact correction; Bottom: signal after artefact 
correction with Blind ICA. 

4 DISCUSSION 

In this work we studied the effect of using an Eye 
Tracker in Ocular Artefact correction of EEG data. 
We implemented standardised signal processing 
methods such as ICA or Wavelet Decomposition, as 
well as a Wiener Filter, a method not generally used 
in EEG artefact correction. 

Our results show that all 4 methods are 
successful in correcting the artefacts, although 
Event-Driven ICA seems to yield the best signal 
after correction. This is an expected finding 
considering that the origins of the artefact and the 
signal are different, and thus Blind Source 
Separation techniques such as ICA have great 
potential in achieving the best signal output. When 
compared to the other methods, Blind ICA clearly is 
stricter with the data and sometimes leads to an 
over-correction. In Figure 11 we can clearly see that 
the data, although it might preserve most of its 
frequency spectrum, has been severely affected by 
the corrective measure. 

There is high inter- and intra-subject variability 
on the EEG recordings; shape of head, changes in 
electrode impedance or subject behaviour can 
influence the data recordings, by introducing 
artefacts and non-linear trends in the signal. 
Moreover, attention or drowsiness can influence the 
Eye Tracking (Di Stasi, McCamy, Catena, et al., 
2013). 

The Wiener Filter is the method that is more 
prone to failure, as it relies on an effective extraction 
of the average artefact. Moreover it will filter out all 
the frequencies represented in the artefact, which are 
low (duration of about 200 milliseconds) (Caffier, 
Erdmann and Ullsperger, 2003) and thus can 
eliminate relevant information from the signal 
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(Harmony, Fernández, Silva, et al., 1999; Whitham, 
Pope, Fitzgibbon, et al., 2007; Iber, Ancoli-Israel, 
Chesson., et al., 2007). 

One improvement that could be performed to the 
Wavelet Decomposition method is the use of a more 
complex adaptive thresholding technique, since the 
one used for this analysis combines only the mean 
and variance of the signal to obtain a threshold; 
other methods have been tested in “blind” 
approaches (Stein, 1981; Krishnaveni, Jayaraman, 
Anitha, et al., 2006) and thus could be implemented 
in this study. 

The ICA technique could be implemented as an 
online correction technique, though it would lead to 
some delay in the output of results. Wavelet and 
Wiener filter methods can only be used for post-
processing and not for online correction with the 
approaches described in this work. 

As further work we would like to appoint the 
validation of these techniques and their pertinence in 
artefact correction. A validation approach was 
attempted, with a Movement Imagery task and a 
simple K- Nearest Neighbours classifier. The goal 
was to examine the classifier’s accuracy for different 
methods of ocular artefact correction, but in the 
experiments the number of ocular artefacts was 
correlated with the Movement Imagery epochs 
(number of blinks increased in Movement Imagery 
and lowered in Rest epochs), thus proving this 
validation method as unable to accurately find the 
best corrective algorithm. 

The potential benefits of a clean EEG signal that 
can be expected are among a better understanding of 
neural signals and better use for these, such as in 
Brain Machine Interfaces that can be used to help 
patients suffering from Locked in Syndrome, as an 
example. Online implementation is although 
required for this purpose, but the usage of an eye 
tracker that is not affected by external 
electromagnetic fields (unlike, for example, 
electrooculograms or magnetic search coils (Schlag, 
Merker and Schlag-Rey, 1983)). Our work suggests  
simple steps towards a cleaner EEG signal, 
hopefully with more usable neural information being 
conveyed in it and useable in real-time. 
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