Numerical Investigation of Newton’s Method for Solving Continuous-time Algebraic Riccati Equations
Vasile Sima, Peter Benner
2014
Abstract
Refined algorithms for solving continuous-time algebraic Riccati equations using Newton’s method with or without line search are discussed. Their main properties are briefly presented. Algorithmic details incorporated in the developed solver are described. The results of an extensive performance investigation on a large collection of examples are summarized. Several numerical difficulties and observed unexpected behavior are reported. These algorithms are strongly recommended for improving the solutions computed by other solvers.
References
- Anderson, B. D. O. and Moore, J. B. (1971). Linear Optimal Control. Prentice-Hall, Englewood Cliffs, New Jersey.
- Arnold, III, W. F. and Laub, A. J. (1984). Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE, 72(12):1746-1754.
- Benner, P. and Byers, R. (1998). An exact line search method for solving generalized continuous-time algebraic Riccati equations. IEEE Trans. Automat. Contr., 43(1):101-107.
- Bini, D. A., Iannazzo, B., and Meini, B. (2012). Numerical Solution of Algebraic Riccati Equations. SIAM, Philadelphia.
- Hammarling, S. J. (1982). Newton's method for solving the algebraic Riccati equation. NPC Report DIIC 12/82, National Physics Laboratory, Teddington, U.K.
- Kleinman, D. L. (1968). On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Contr., AC-13:114-115.
- Lancaster, P. and Rodman, L. (1995). The Algebraic Riccati Equation. Oxford University Press, Oxford.
- Laub, A. J. (1979). A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Contr., AC24(6):913-921.
- Leibfritz, F. and Lipinski, W. (2003). Description of the benchmark examples in COMPleib. Technical report, Dep. of Mathematics, University of Trier, Germany.
- MATLAB (2011). Control System Toolbox User's Guide. Version 9.
- Mehrmann, V. (1991). The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution Springer-Verlag, Berlin.
- Mehrmann, V. and Tan, E. (1988). Defect correction methods for the solution of algebraic Riccati equations. IEEE Trans. Automat. Contr., AC-33(7):695-698.
- Sima, V. (1996). Algorithms for Linear-Quadratic Optimization. Marcel Dekker, Inc., New York.
- Van Dooren, P. (1981). A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput., 2(2):121-135.
- Varga, A. (1981). A Schur method for pole assignment. IEEE Trans. Automat. Contr., AC-26(2):517-519.
Paper Citation
in Harvard Style
Sima V. and Benner P. (2014). Numerical Investigation of Newton’s Method for Solving Continuous-time Algebraic Riccati Equations . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 404-409. DOI: 10.5220/0005117004040409
in Bibtex Style
@conference{icinco14,
author={Vasile Sima and Peter Benner},
title={Numerical Investigation of Newton’s Method for Solving Continuous-time Algebraic Riccati Equations},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={404-409},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005117004040409},
isbn={978-989-758-039-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Numerical Investigation of Newton’s Method for Solving Continuous-time Algebraic Riccati Equations
SN - 978-989-758-039-0
AU - Sima V.
AU - Benner P.
PY - 2014
SP - 404
EP - 409
DO - 10.5220/0005117004040409