Multi-goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot
Petr Vaněk, Jan Faigl, Diar Masri
2014
Abstract
This paper presents our early results on multi-goal trajectory planning with motion primitives for a hexapod walking robot. We propose to use an on-line unsupervised learning method to simultaneously find a solution of the underlying traveling salesman problem together with particular trajectories between the goals. Using this technique, we avoid pre-computation of all possible trajectories between the goals for a graph based heuristic solvers for the traveling salesman problem. The proposed approach utilizes principles of self-organizing map to steer the randomized sampling of configuration space in promising areas regarding the multi-goal trajectory. The presented results indicate the proposed steering mechanism provides a feasible multi-goal trajectory in a less number of samples than an approach based on a priori known sequence of the goals visits.
References
- Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2003). CONCORDE TSP Solver. [cited 28 Feb 2012].
- Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2007). The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press.
- Bevly, D., Farritor, S., and Dubowsky, S. (2000). Action module planning and its application to an experimental climbing robot. In ICRA, pages 4009-4014.
- Englot, B. and Hover, F. (2011). Multi-goal feasible path planning using ant colony optimization. In ICRA, pages 2255-2260.
- Faigl, J., Kulich, M., Vonásek, V., and Pr?euc?il, L. (2011). An Application of Self-Organizing Map in the nonEuclidean Traveling Salesman Problem. Neurocomputing, 74(5):671-679.
- Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. Int. J. Rob. Res., 30(7):846-894.
- Lavalle, S. M. and Kuffner, J. J. (2001). Rapidly-Exploring Random Trees: Progress and Prospects. Algorithmic and Computational Robotics: New Directions, pages 293-308.
- Pivtoraiko, M. and Kelly, A. (2005). Efficient constrained path planning via search in state lattices. In Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space.
- Reif, J. H. (1979). Complexity of the mover's problem and generalizations. In SFCS 7879: Proceedings of the 20th Annual Symposium on Foundations of Computer Science, pages 421-427. IEEE Computer Society.
- Saha, M., Roughgarden, T., Latombe, J.-C., and SánchezAnte, G. (2006). Planning Tours of Robotic Arms among Partitioned Goals. Int. J. Rob. Res., 25(3):207- 223.
- Vonásek, V., Saska, M., Kosnar, K., and Preucil, L. (2013). Global motion planning for modular robots with local motion primitives. In ICRA, pages 2465-2470.
- Yamakawa, T., Horio, K., and Hoshino, M. (2006). SelfOrganizing Map with Input Data Represented as Graph. In Neural Information Processing, pages 907- 914. Springer Berlin / Heidelberg.
Paper Citation
in Harvard Style
Vaněk P., Faigl J. and Masri D. (2014). Multi-goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 599-604. DOI: 10.5220/0005118405990604
in Bibtex Style
@conference{icinco14,
author={Petr Vaněk and Jan Faigl and Diar Masri},
title={Multi-goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={599-604},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005118405990604},
isbn={978-989-758-040-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Multi-goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot
SN - 978-989-758-040-6
AU - Vaněk P.
AU - Faigl J.
AU - Masri D.
PY - 2014
SP - 599
EP - 604
DO - 10.5220/0005118405990604