Input-output Characteristics of LIF Neuron with Dynamic Threshold and Short Term Synaptic Depression

Mikhail Kiselev

2014

Abstract

We consider a model of leaky integrate-and-fire neuron with dynamic threshold and a very simple realization of short term synaptic depression mechanism. Model simplicity makes possible creation of very large networks on its basis. Required general properties of these networks can be obtained due to the appropriate selection of neuron parameters. Knowledge of the dependence of neuron firing frequency on presynaptic activity for various neuron parameters is crucial for this selection. Since this dependence cannot be obtained in an exact analytical form we describe the process of building its empirical approximation using the multiple adaptive regression splines algorithm. This methodology can be used for other neuron models.

References

  1. Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press (2002)
  2. Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N.: The FitzHugh-Nagumo Model: Bifurcation and Dynamics. Kluwer Academic Publishers, Boston (2000)
  3. Izhikevich, E. M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks. 14 (2003) 1569- 1572
  4. Benda, J., Maler, L., Longtin, A.: Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology. 104 (2010) 2806-2820
  5. Abbott, L. F., Varela, J.A., Sen, K., Nelson, S. B.: Synaptic depression and cortical gain control. Science. 275 (1997) 220-224
  6. Tsodyks, M., Pawelzik, K., Markram, H.: Neural networks with dynamic synapses. Neural Comput 10 (1998) 821-835
  7. Rosenbaum, R., Rubin, J., Doiron, B.: Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer. PLoS Comput Biol 8(6): e1002557. doi:10.1371/journal.pcbi.1002557 (2012)
  8. Kiselev, M. V.: Self-organized Spiking Neural Network Recognizing Phase/Frequency Correlations, Proceedings of IJCNN'2009, Atlanta, Georgia, (2009) 1633-1639.
  9. Kiselev, M. V.: Self-organized Short-Term Memory Mechanism in Spiking Neural Network, Proceedings of ICANNGA 2011 Part I, Ljubljana,(2011) 120-129.
  10. Friedman, J. H.: Multivariate Adaptive Regression Splines. Annals of Statistics. 19, 1 (1991) 1-141
  11. http://www.megaputer.com/site/polyanalyst.php
Download


Paper Citation


in Harvard Style

Kiselev M. (2014). Input-output Characteristics of LIF Neuron with Dynamic Threshold and Short Term Synaptic Depression . In Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014) ISBN 978-989-758-041-3, pages 11-18. DOI: 10.5220/0005119700110018


in Bibtex Style

@conference{anniip14,
author={Mikhail Kiselev},
title={Input-output Characteristics of LIF Neuron with Dynamic Threshold and Short Term Synaptic Depression},
booktitle={Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)},
year={2014},
pages={11-18},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005119700110018},
isbn={978-989-758-041-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)
TI - Input-output Characteristics of LIF Neuron with Dynamic Threshold and Short Term Synaptic Depression
SN - 978-989-758-041-3
AU - Kiselev M.
PY - 2014
SP - 11
EP - 18
DO - 10.5220/0005119700110018