
RBAC with ABS
Implementation Practicalities for RBAC Integrity Policies

Mikko Kiviharju
Finnish Defence Research Agency, Riihimaki, Finland

Keywords: MLS, RBAC, CBIS, ABE, Cryptography, Access Control Models.

Abstract: Role-based access control (RBAC) is the de facto access control model used in current information systems.
Cryptographic access control (CAC), on the other hand, is an implementation paradigm intended to enforce
AC-policies cryptographically. CAC-methods are also attractive in cloud environments due to their
distributed and offline nature of operation. Combining the capabilities of both RBAC and CAC fully seems
elusive, though. This paper studies the feasibility of implementing RBAC with respect to write-permissions
using a recent type of cryptographic schemes called attribute-based signatures (ABS), which fall under a
concept called functional cryptography. We map the functionalities and elements of RBAC to ABS
elements and show a sample XACML-based architecture, how signature generation and verification
conforming to RBAC-type processes could be implemented.

1 INTRODUCTION

Role-based access control (RBAC) is very often the
most practical model for access control, due its
versatility, dynamics and accurate modelling of real
world problems. RBAC policies are traditionally
enforced by a concept called reference monitor
(RM), which is instantiated as a security kernel,
typically operating system components.

The usual problem of security kernels is that they
need to implement the assumptions of an abstract
entity (the RM), which include non-passability,
ubiquity, and verifiability (leading to high assurance
in its correct and secure functioning). In today’s
highly distributed and heterogeneous environments
achieving these goals become either very expensive
or highly localized and suitable for special cases
only.

Cryptography, on the other hand, offers high
assurance on some aspects and is cost-effective to
implement. Solving access control problems with
cryptography is called cryptographic access control
(CAC), or when applied to RBAC directly, CRBAC.
Most of the work on CRBAC focuses on enforcing
confidentiality policies or high level models, but
there is a “middle ground”, between theory and
actual cryptographic schemes, that is almost entirely
lacking in current literature.

Our aim in this paper is to bridge this gap by
presenting a mapping for CRBAC integrity policies
from existing standards to existing cryptographic
schemes, as well as study their limitations. (By
“integrity policies” we mean that the RBAC
permission enforced is the write-permission, and
consider relatively static documents as the RBAC
objects.)

A recent cryptographic innovation called
functional cryptography, including such concepts as
attribute-based encryption (ABE, (Goyal, 2006)) and
attribute-based signatures (ABS), resolves many
requirements and operations in the RBAC-model.
Our contributions in this paper are as follows:

1) We investigate the practicalities of existing
ABS schemes w.r.t integrity policy enforcement
in reality, including status quo and some
overlooked details.

2) We provide an implementation model, which is
based on the XACML 3.0 reference architecture
(Rissanen, 2013), collaboratively managed
documents in a publish-subscribe-model and
cloud storage; and which can be used to enforce
access control cryptographically for write-
permissions with ABS. We use a widely
adopted standard in order to show the feasibility
to transform existing systems or create new
systems for the CAC paradigm.

500 Kiviharju M..
RBAC with ABS - Implementation Practicalities for RBAC Integrity Policies.
DOI: 10.5220/0005122105000509
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 500-509
ISBN: 978-989-758-045-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

3) We show how different RBAC standard model
elements and commands can be realized in
CAC with different ABS-methodologies.

Our main motivation in researching ways to
implement RBAC using mainly cryptographic
controls is the possibility to move the wealth of
existing practice and experience invested in RBAC to
an implementation paradigm, which is remarkably
more suitable for current cloud environments.

2 PRELIMINARIES

RBAC (Sandhu, 2000) is an access control model,
which decouples the user (subject) relations to
protected objects via a role. We use the RBAC
model and terminology described in the RBAC-
standard by INCITS (ANSI, 2012) (currently the
consolidated version referred to as RBAC3), and
restrict ourselves to the administrative commands of
the standard in the Core RBAC for brevity. We do,
however, consider Hierarchical and Constrained
RBAC in the structure and functionality they
provide to the whole, but not their dynamics (e.g.
adding inheritance relations or modifying dynamic
separation-of-duty- sets). Note that we include the
concept of an administrative role from ARBAC
(Sandhu, 1999).

The RBAC-standard includes a multitude of
commands to create, maintain and report the
necessary elements and their mappings. The relevant
commands we consider are from the Core RBAC,
together 13 different commands (see Table 3).

For the purpose of RM-implementations and
architecture, we refer to the XACML reference
architecture (Rissanen, 2013) and elements,
specifically: Policy Enforcement Point (PEP), Policy
Decision Point (PDP), Policy Administration Point
(PAP) and Policy Information Point (PIP)

3 CRYPTOGRAPHIC ACCESS
CONTROL

3.1 General

Following the access control meta-model presented
in (Barker, 2009) we may assume that there exists a
(countable) set of action types, which can be
associated with
 resource types, jointly called permissions (to

perform some action on a resource)

 resource and principal types, jointly called
authorizations (for a principal to have a
permission),

For many practical access control policies it is
justifiable to present subsets of permissions as
combinations of only two types of actions (read
and write), and a categorization of resource types
into data and metadata levels s.t. some combination
of these two rights together with appropriate
decomposition of the resource translates to the
original permission. For example, all the permission
types used in MS SQL Server 2000 DBMS, Linux,
Windows 7 and Bell-laPadula model were mapped
in (Kiviharju, 2012) to a subset of permissions such
that the subset of actions used was {read,
write}. The motivation and background for this
kind of decomposition was to be able to enforce
more policy types than just pure confidentiality and
integrity policies with cryptography.

3.2 CAC Models and Related Work

The work on CAC models traditionally has focused
on information flow control (IFC) policies and key-
assignment schemes (Crampton, 2006; Atallah,
2009). CRBAC is addressed for example in
(Crampton, 2006), where it is shown that hierarchical
key assignment schemes (HKAS) for IFC can also be
used to enforce read-rights in RBAC, and that each
ABE-policy also has a HKAS-enforced RBAC-
policy. The converse, however, is not shown.

The authors in (Zhu, 2011) develop a
cryptographic security model for CRBAC, and they
also map the RBAC commands to predicate
encryption (PE) scheme functionalities. The
CRBAC-paper, too, is somewhat detached from
actual crypto scheme practicalities: for example role
revocation entails assigning new attributes for roles
and complete re-encryption of the part of content,
which is both inefficient and against the principles of
any IBE-related scheme (i.e. identities should not be
changed).

Cryptographic signatures for CRBAC have been
considered for example in (Crampton, 2010), but
only for inter-domain authorization in the manner of
attribute certificates.

The work in (Crampton, 2008) gives a general
framework for a role key hierarchy usable for
encryption, signing and authentication. Their
viewpoint is rather on how to assign keys for
different cryptographic policies based on RBAC
policies (although for encryption, this is equivalent
for actually enforcing RBAC policies).

RBAC�with�ABS�-�Implementation�Practicalities�for�RBAC�Integrity�Policies

501

3.3 Signatures and Integrity

Digital signatures are a class of public-key
cryptographic primitives that work towards
providing assurance of the origin authenticity of a
message (= “Did the claimed entity produce this
message?”). One of the more modern classes
includes functional signatures (FS) and their
subclass, attribute-based signatures (ABS). They
raise the abstraction level for the authenticity to be
dependent on more general attributes (=”Was this
message produced in reality with the claimed
authorization?”). We postulate that enforcing the
write -permission cryptographically in the current
RBAC-model is most practically performed via ABS
schemes.

Protecting data integrity cryptographically with
digital signatures has three main goals: to provide
the verifier assurance of the data origin authenticity,
the absence of unauthorized modifications and also
of the content validity (as in: how accurate the
information itself is). In the case of conventional
signatures, where there is only one “attribute” (the
user identity) provided, these facets of integrity are
equal. However, in the attribute-based setting the
verifier may have a different concept of which
combination of attributes are sufficient to prove the
validity of the content than the combination used to
prove authenticity, such that the verifier would like
to specify the policy under which she verifies. The
problem is akin to the key-/ciphertext policy dualism
used in attribute-based encryption (ABE).

The current ABS-/FS-constructions aim to prove
data origin authenticity, thus they tie the policy to
the signing key, conforming to the key-policy model
(abbreviated here KP-ABS). Thus currently the
verifier is not able to select the policy (see table 1).

From the perspective of access control, content
validity via a scrutiny of content producers is more
akin to creating and viewing log files. The
associated permissions then are append, read,
edit and delete to the log file resource class.
Thus for the general write -permission, the history
and individual signers can be left out of scope.

4 RBAC AND ABS

4.1 General

Attribute-based signatures (ABS) were introduced as
a concept in 2007 (Khader, 2007). With ABS, the
signer can prove the authenticity via a predicate over

attributes rather than his/her identity. The
distinguishing feature of ABS over related concepts
is the ability to provide unforgeability, signer (and
policy) privacy and collusion prevention all at the
same time. Collusion prevention is especially
important in filling a loophole present in CAC in
general: reference monitors are able to separate
different users with (RBAC-/login-)sessions, but
CAC schemes need to differentiate between users
via other methods, such as personalized credentials.

The first full-fledged ABS was the scheme by
Maji et al. (Maji, 2011). On the technical side, it
appears that ABS can be realized either via non-
interactive proof techniques or based on encryption
schemes. (ABE is a derivative of IBE, and enjoys a
natural definition for signatures, where one creates a
one-time key-pair using the message (or hash of it)
as the public key and the private key as the
signature, making the IBE/ABE “master key” the
signing key). The latter technique offers signatures
an order of magnitude shorter than proof techniques.

The ABS scheme employed here is the scheme in
(Maji, 2011), referred to as MPR-ABS. Its basic
concepts include
 Credential bundles, which are personalized

per-attribute private keys (personalization is
performed e.g. by prepending globally unique
user identifiers to attribute information and
signing them with Boneh-Boyen signatures
(Boneh, 2004) and the actual attribute private
keys)

 Claim predicates, which are essentially policy
formulas applied to the attributes / credential
bundles. They are an analogue of access
control policies and RBAC active roles in that
they can restrict, which attributes user is
allowed to use and which not.

Related to an issue discussed above (the content
validity) is the concept of individual non-
repudiation: if someone has misused her authority to
sign content on false grounds, there should be a
mechanism to uncover the individual signer behind
the attributes. Non-repudiation is, in general, not
incorporated in ABS-schemes: although individual
signers have personalized key-material (e.g.
credential bundles in (Maji, 2011)), this is in the
form such that the personalization is not easily
extractable (e.g. the signed identifier-attribute
combinations in (Maji, 2011). While this feature can
be used for testing suspect individuals (if the
attributes used are known), it cannot be used to
directly extract the user identities behind the
signature. There are specific signature schemes to
accomplish this, such as (Escala, 2011), but these are

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

502

separate building blocks not easily integrated to
other functions.

Typical of all ABS schemes is that they are
inherently group signatures, and that the attributes,
the policy or both are tied to “manager”-level private
keys. If these master keys are under the authority of
one entity, it is usually referred to as signature
trustee.

ABS schemes have one common security goal,
unforgeability. Other goals are different privacy-
related goals: verifiers should not be aware, or
extract from the signature (without additional
information) the individual signer within a group of
signers, or the policy under which the signing was
performed. Arguably it is case-specific, whether the
access control policy itself should be public or not,
but we find it more natural and more convincing, if
the verifier is given the formula which the signature
was generated with. (This type of privacy is possible
to incorporate via e.g. DFS (Backes, 2013), but for
simplicity, we use schemes that do not allow policy
privacy).

4.2 ABS Relation to Policies

In functional cryptography in general it is possible to
specify, when and where the access control policy is
cryptographically possible to encode. The main
categories are key- and ciphertext policies (KP and
CP, respectively), although mixtures exist as well. In
the KP-model, the policy is encoded in the private
key and in the CP-model to the ciphertext. Signature

schemes bring more variety to the policy. Ideally
policies can be:
 encoded to the private key or the signature
 selected by the signer or the verifier
 can be private of public

The suitability for ABS for enforcing RBAC is
explored below, in table 1, with properties relevant
to RBAC enforcement given. The conventions used
in the table are as follows: S = individual signer, V =
verifier, K = private key of S, σ = signature, p =
policy, Ts = signature trustee, Is = identity of S, IA =
identity of attributes.

From Table 1 it can be seen that signature
schemes, which are able to enforce authenticity
based on policies / attributes can be divided into two
categories: original ABS and functional signatures
(FS). The fundamental difference (policy-wise)
between these is that ABS divide the policy
enforcement into two: first creating the attribute
private keys and the user randomization (performed
by the signature trustee), and then allowing the
signer to select the policy (as far as his attributes
allow). FS schemes have the signature trustee
generate the policy and embed that into the user key.
Only the DFS-scheme can be used in such a manner
that some policy-defining power is given to the
individual signer (although it is not intended for
such a purpose).

In the RBAC-model user is decoupled from the
resource via the role. Thus user assignment and role
activation need to be performed separately. In ABS
this decoupling is naturally present via attribute

Table 1: Policy encoding and processing properties of the main ABS/FS schemes.

Scheme Novelties Policy
Encoding

Policy
Selection

Process
privacy

(1)

Policy expressiveness Main
technique

MPR‐ABS (a) First ABS σ S IS, IA Monotonic Boolean
formulas over attributes

NIWI (h)

DMA‐ABS (b) No signature trustee σ S IS Non‐monotonic Boolean
formulas over attributes

DMA‐FE (b)

NM‐ABS (c) Non‐monotonicity, small
signature size

σ S IS Non‐monotonic Boolean
formulas over attributes

CP‐FE (i)

R‐ABS (d) “Revocability” (of anonymity
of individual signer)

σ S IS
(6)

Monotonic Boolean
formulas over attributes

NIWI (h)

PBS (e) All policy languages in P K, σ TS p, IS, (IA) P‐language over
messages

Groth‐Sahai
Proofs (h)

FS (f) Signature size independency
of policy size

K, σ TS p, IS, (IA) All policies expr. with a
poly‐size circuit

NIZKAoK (j)

DFS (g) Delegation, limited
malleability

K
(3)
, σ S,TS

(2)
p
(5)
, IS

(4)
, (IA) Efficiently computable

functions
NIZK required
(k)

(1): The elements, which are hidden from the verifier (in parenthesis, if not applicable)
(2): Signature trustee is able to assign a family of func. to the signer to delegate further
(3): The delegation key with restrictions on the functionalities allowed to be delegated
(4): Including delegated signers
(5): Policy is public for intermediate signers
(6): Unless revoked

a: (Maji, 2011)
b: (Okamoto,
2013)
c: (Okamoto, 2011)
d: (Escala, 2011)
e: (Bellare, 2014)
f: (Boyle, 2013)

g: (Backes, 2013)
h: (Groth, 2008)
i: (Okamoto, 2010)
j: (Bitansky, 2013)
k: (Groth, 2006)

RBAC�with�ABS�-�Implementation�Practicalities�for�RBAC�Integrity�Policies

503

private keys generation and user (process) applying
allowed policies. In FS, the signature trustee will
need to generate new private keys per each new set
of active roles. DFS (Backes, 2013) can be
employed for a similar purpose, but for simplicity
we select ABS as the schemes of choice in our
implementation model.

The ABS and FS have differences in the
complexity of the policy they are able to express.
ABS (including non-monotonic ABS) are limited to
the class NC1. FS-schemes are able to represent
general Boolean circuits in complexity class
NC ⋃ NC . PBS extends this class of functions
even further. The advantage of using larger circuits
lies in the fact that some problems are not known be
contained within NC1 (such as graph reachability,
which is known to be in NC2 only). The most
common operators, AND, OR, NOT, =, <, >, ADD,
MUL, DIV, EXP, LOG, keyword search and
regexp are contained within NC1. With these, an
overwhelming percentage of real-life access control
policies can already be expressed, and thus there is
no need to go to general circuits from the
perspective of this paper.

5 IMPLEMENTATION MODEL

5.1 RBAC Model Mapping

The RBAC model is, as such, functionally more
fine-grained than using encryption schemes and
signatures without distributing keying material to
more than one entity type. For example, the model
Supporting System Functions require that active
roles can be changed within a session, if e.g.
environmental conditions change.

If the CAC implementation uses only a single
claim-predicate for the user per session, her
signatures will either be accepted during the session
or not – if a role should be deactivated, the user
needs to “log out” or request a new claim-predicate.
We introduce a remedy for this in the session
management description.

The different RBAC elements and functions are
mapped to ABS elements in Tables 2 and 3. Some of
the most crucial concepts are elaborated here.

Role: The attributes are natural embodiments for
roles (visible also in the XACML-architecture) –
however, there is the question whether to bundle
attributes into sets to map to one role in CAC.
Considering that the reference monitor also makes
access choices based on logical formulas over roles,
this principle carries easily to CAC as well. An

additional note for roles is that in ABS-schemes,
each attribute has a private key. This is not directly
used by an individual signer, but they are needed in
the signing process, as the verification is based on
attributes (rather, their public keys) only.

Table 2: RBAC elements mapping.

Session management: The purpose of the
Session-concept in RBAC is to model different
profiles for a user. Profiles include different active
roles, but they are normally activated in the same
batch as the session is created. From the CAC
perspective, different sessions are modelled via
giving the user multiple identities (which could be a
login ID formed by concatenating the user’s
personal identity with her current profile identity).
When a session is created, it is automatically
assigned a default set of active roles. In CAC, and
particularly in ABS, this corresponds to defining a
claim-predicate over the attributes (essentially a
Boolean formula of how and which attributes are
used). Any change in the active roles (whether it
happens inside a session or via re-establishing a
session) requires establishing a new claim-predicate.
We note that in the current schemes nothing
prevents the signer from selecting a suitable claim-
predicate. Ideally, the claim-predicate itself should
be time-stamped and authenticated by the signature
trustee, or equivalent OBJ-subdomain (see the next
chapter for the subdomains definition) controller.

Session separation: Different sessions will be
separated from each other based on the personalized
credential bundles (with differing login IDs, if
needed).

User assignment: User can be assigned to the
role without yet activating the role. In this mapping
UA means delivering the user an item of the

KP-ABS ([MPR10] by default)

Object Document / Message / Content

Operation write
Permission Private key existence for an attribute
User User
Role Attribute
Session (differentiator) User credential bundle personalization
Session (active roles) User's possession of her personalized credentials

(with a given attribute set) and a defined claim-
predicate

PA Attribute secret key creation
UA User's possession of personalized credentials (with

a given attribute)
Role Hierarchy Static hierarchy: Attribute delegation
Admin role Role on metadata
Static SoD Non-monotonic claim-predicates (NM-KP-ABS,

[Oka11])
Dynamic SoD Non-monotonic claim-predicates (NM-KP-ABS,

[Oka11])

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

504

Table 3: RBAC commands mapping.

credential bundle corresponding to the attribute, to
which user is assigned.

Revocation: Revocation means in this context the
deletion of a user assignment or the role-permission
association (session-related changes require only
changing the claim-predicate). In order to define
revocation in CAC for the write-permission, we
recall that the policy enforcement is performed in
two locations: the OBJ-subdomain to allow access
to current private key material in the first place, and
then in the USR-subdomain to actually check the
validity of the signature. Since the signing operation
as such can be performed by anyone who is familiar
with the signing scheme, denying a revoked user
access to the signing software/hardware per sé does
not solve the problem, if the receiving end does not
perform her verification duties. Thus the revocation
needs to somehow communicate the revoked /
outdated status of the attributes or users to the
verifying parties. There are two possibilities for this:
time-stamped attributes and revocation list
distribution. Handling the revocation in CAC with
write is notably simpler than with read, since the
main part of the enforcement is always performed by
non-revoked (and thus benevolent) principals, and it
is even possible to extend the domain of revoked
content beyond the moment of compromise
detection.

A problem with revocation arises, when / if the
read-permission is also enforced cryptographically,
and ciphertext revocation is used. Ciphertext
revocation assumes the use of functional encryption
and provides a way to re-encrypt ciphertexts to be

compatible with a new FE-key. We assume hybrid
encryption (content encrypted with symmetric
algorithm and the symmetric key with FE), leaving
the content signatures unchanged. However, if the
keying material is also authenticated, there will arise
a need to resign it. To address this, there is a concept
called sanitizable signatures (SSS, explained e.g. in
(Backes, 2013)), which basically allow replacement
of structured content elements (not removal or
adding as such). In SSS, the modifier creates
additional signatures such that they can be verified
under the original public key, but the verifier is not
able to extract any information of the content
previously signed – in this case the encrypted
content key before ciphertext revocation. The
delegatable functional signatures (DFS (Backes,
2013)) also encompass SSS, and they can be viewed
as the attribute-based extension of SSS.

Should a verifier come across content with an
invalid or revoked signature, he should merely
ignore it and request another copy of the content.

Administrative roles (AR): these are roles that are
can create, manage and delete other roles. They can
be supported via CAC applied to RBAC metadata,
e.g. by attaching AR-signatures to a managed role’s
attribute and permission descriptors.

5.2 XACML-Conformant Architecture

There are three different subdomains: SIG, Channel
and VRF, for the signer, storage medium and
verifier functions, respectively. The model depicts a
publish-subscribe type of environment, where
information is first requested to be published, and
the request for subscribing and decryption only
follows afterwards. Publishers and subscribers are
usually not assumed to establish contact or exchange
keying material after the initial handshakes (Ion,
2010). The requesting application for publishing is
depicted in the SIG-subdomain, and the subscriber
in the VRF-subdomain, whereas the Channel
subdomain is responsible for the storage.

Using signatures is essentially a two-party
protocol, involving both the signer and the verifier.
As such, it is not sufficient to have correct private
keys in order to publish authorized material – the
verifier action is also needed (in case the signer uses
outdated or revoked keys, for example). Thus the
enforcement function is necessarily decoupled for
write in CAC.

The most frequently used definitions for the
XACML Core specification (Rissanen, 2013) data
flow architectural elements (the XACML
specification itself, RFC 3198, RFC2904, RFC2753

RBAC command Applicable function(s)
AddRole Role mgmt and PAP function

GrantPermission Create private key for an attribute

AddUser User mgmt function
AssignUser Generate user's (new) credential bundle
CreateSession Create user's current claim-predicate
AddActiveRole Change user's claim predicate
CheckAccess SIG-subdomain: sign; VER-subdomain: Try fetch

an instance of the signed content from the
Channel and verify it

DropActiveRole Change user's claim predicate
DeleteSession Invalidate user's claim-predicate
DeassignUser (with
loss of auth. [8])

For the deassigned role: Exclude user from next
credential bundle update (time-stamped attribute
names) and/or Revocation list distribution

DeleteUser User mgmt function + DeassignUser (for all its
roles)

RevokePermission Exclude attribute from next attribute private key
update (time-stamped attribute-names) and/or
Revocation list distribution

DeleteRole Role mgmt and PAP function + RevokePermission
for all the permissions of the role

RBAC�with�ABS�-�Implementation�Practicalities�for�RBAC�Integrity�Policies

505

and ISO 10181-3) do not place restrictions on the
policy handling point locations as such. Thus we
conclude that the decoupling of PEP is not against
any previous models, only outside them. The VRF-
subdomain is depicted in Figure 1.

Figure 1: The architecture VRF-subdomain.

The verification subdomain (VRF) is responsible
for the decisions whether the content fetched from
the Channel is available, endowed with valid
signatures and whether to re-fetch another instance
from the Channel. Mapping verification to
XACML-functionality is as follows:
 PDP: Verification of the signature requires

information of the policy against which the
decision is made, and is inherently a decisional
function. Although the verification value needs
to be computed, the computation is based on
the information attached to the content. From
the XACML perspective this becomes then the
responsibility of PDP. Other components, such
and PEP and PIP should not be base their
actions on the policy, although they may try to
forward it. PDP may get the policy from a
common policy store in the Channel as well.
PDP is assumed to maintain some bookkeeping
of the document instances such that in the case
of verification failure it can deduce whether it
is feasible to find valid instances in the
Channel. PDP is also assumed to return its
decision as belonging to the set: {verified,
retry, non-verified}.

 PIP: the role of PIP is to gather environmental
and object-related attributes. For the purpose of
verification of content, all the relevant
attributes and policies are (at least with the case
of ABS and FS) carried with or encoded in the

signature. This leaves little responsibilities for
the PIP; it may, signature scheme allowing, try
to extract the attributes and policy from the
signature.

 PEP: since the document verification itself is
left for the PDP, PEP is left mainly with
forwarding requests and responses. However, if
PDP returns retry, PEP will reissue the content
retrieval from the Channel.

 ContH: In XACML, the context handler
responsibility is to fetch the actual resource and
combine the necessary attributes, policies and
resource into one coherent resource context.
The only major change in its operation is the
way it is fetching the resource: it is not a local
disk or database-query, but rather a
subscription from a cloud-based environment
(the Channel).

PAP, PS and Application roles and functions need
not be changed.

The signing (SIG) subdomain has the main
responsibility of enforcing the write-permission.
In order to be able to separate user assignment from
role activation (as described in the model mapping)
in MPR-ABS scheme functionality, the claim
predicate needs to be separately controlled. In the
MPR-ABS, the claim predicate can effectively be
freely selected by the signer (his attributes
allowing), which is more coarse-grained control than
the role activation functionality in RBAC requires.
Thus in our model we employ trusted computing
base (TCB), which controls the claim predicate. In
the verification phase the VRF-subdomain needs to
ascertain that TCB was indeed used in the selection
of the claim predicate. This requires further that the
claim-predicate can be satisfied only if it includes
attributes in possession of only the TCB. This in turn
assumes that TCB and user attributes can be
combined, which is against the collusion prevention
principle usually employed in attribute-based
cryptography. There are both scheme-dependent
techniques to accomplish this kind of
combination/collusion in a controlled setting and
more general ways for less expressive formulas
using secret sharing schemes, but these techniques
are outside the scope of this paper. In the
verification phase the VRF-subdomain needs to
ascertain that TCB was indeed used in the selection
of the claim predicate. This requires further that the
claim-predicate can be satisfied only if it includes
attributes in possession of only the TCB. This in turn
assumes that TCB and user attributes can be
combined, which is against the collusion prevention
principle usually employed in attribute-based

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

506

Figure 2: The architecture SIG-subdomain.

cryptography. There are both scheme-dependent
techniques to accomplish this kind of
combination/collusion in a controlled setting and
more general ways for less expressive formulas
using secret sharing schemes, but these techniques
are outside the scope of this paper.

An alternative way of restricting the signer
capability in selecting the claim predicate is to
integrate the predicate directly in to the private key,
as done in FS and DFS. This scenario requires a
more available and more broadband connection to
the signature trustee, and thus not considered here.
The SIG-subdomain is depicted in Figure 2.
 PDP: PDPs in both portions are responsible for

translating the current policy and attributes into
a decision, whether individual currently valid
signing keys (credential bundles) can be
released or not. They also communicate
attribute private keys to the PEP to use in the
actual creation of the bundles. PDPTCB
communicates the active roles information in
the form of claim predicate, to PEPTCB.

 PIP: PIPs role is not changed from reference
monitor realm here.

 ContH: Context handler relays and formats the
material it handles, it’s role in CAC is not very
significant.

 Application: The application (on the user level)
is responsible for coordinating the credential
bundle retrieval and for requesting the final
signing. It also publishes the signed document
to the channel. The user application will act as
the XACML application for both the TCB and
KPF portions of the SIG-subdomain.

Some of the tasks are global (we are assuming only
one attribute authority), such as granting permissions
for a role, which translates to attribute private key
generation. This is implicitly a PAP function and the
necessary information is incorporated in the policy
received from the policy store.

6 EFFICIENCY
CONSIDERATIONS

A cryptographic scheme is a prescription of
operations (on varying levels of abstraction) that
should be realized in order to have an actual

RBAC�with�ABS�-�Implementation�Practicalities�for�RBAC�Integrity�Policies

507

instantiation of the scheme, i.e. it would need to be
programmed or burned into a chip.

ABS is mostly based on special elliptic curve
groups (ECG) and so-called pairing functions applied
to them. There are even existing libraries realizing
some ABE schemes already, such as (Bethencourt,
2011). We have investigated previously the
bandwidth and computational efficiency of existing
schemes on different security levels, and combining
them with results given in (Okamoto, 2011), we can
give some figures for 128-bit security parameter and
access control structure of size 10 (as in number of
clauses):
 ABGS (Khader, 2007) (ABE-based, aver.case):

0,9 kB
 MPR-ABS (Maji, 2011) (NIZK-based, worst

case): 23,5 kB
 MPR-ABS (Maji, 2011) (NIZK-based, best

case): 1,5 kB
 NM-ABS (Okamoto, 2011) (FE-based, best

case): 81 B
For implementation purposes the NIZK-based ABS
are clearly far less efficient than encryption-based
ABS. However, we believe that moving to
cryptographically enforced RBAC is no longer just a
feasibility study, but something that merely needs
integration work to make an actual demonstrable
system.

7 CONCLUSIONS

Our research shows that current ABS-schemes can
already support the Core RBAC, in a distributed
implementation model and considering the write-
permission. There are problems still, especially with
dynamic hierarchies and providing support to both
role activation separation from user assignment; and
strict control of role activation at the same time. The
Core RBAC commands can be simulated with ABS,
indicating a feasible transformation for RBAC
systems from RM to CAC.

The ABS are a sufficient and necessary class of
signature schemes for implementing the most
common access control needs and policies. The
reasons for going beyond ABS to FS would include:
 Complex policies requiring evaluation of

arguments beyond NC1
 Moving the claim-predicate enforcement from

trusted hardware to key management (and
accepting a more frequent or hierarchical key
updates)

Future work will include e.g. designing
cryptographic schemes more suitable for content
validation, where the verifier is able to select the
policy (instead of signer).

REFERENCES

ANSI, 2012. American National Standard for Information
Technology – Role Based Access Control, INCITS
359-2012, ANSI.

Atallah, M., Blanton, M., Fazio, N., Frikken, K., 2009.
Dynamic and Efficient Key Management for Access
Hierarchies, In: ACM Transactions of Information and
System Security, Vol. 12, No. 3, Article 18, ACM.

Backes, M., Meiser, S., Schröder, D., 2013. Delegatable
Functional Signatures, In
https://eprint.iacr.org/2013/408, IACR.

Barker, S., 2009. The Next 700 Access Control Models or
a Unifying Meta-Model?, In SACMAT’09, pp. 187-
196, ACM New York.

Bellare, M., Fuchsbauer, G., 2014. Policy-Based
Signatures, In PKC 2014, Springer (to appear).

Bethencourt, J., Sahai, A., Waters, B., 2011. Ciphertext-
Policy Attribute-Based Encryption-project, in
Advanced Crypto Software Collection,
http://hms.isi.jhu.edu/acsc.,

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E., 2013.
Recursive composition and bootstrapping for snarks
and proof-carrying data. In STOC 2013, pp. 111-120,
ACM.

Boneh, D., Boyen, X., 2004. Short signatures without
random oracles. In EUROCRYPT 2004, LNCS 3027,
pp. 56-73. Springer.

Boyle, E., Goldwasser, S., Ivan, I., 2013. Functional
Signatures and Pseudorandom Functions. In
https://eprint.iacr.org/2013/401, IACR.

Crampton, J., Martin, K., Wild, P., 2006. On Key
Assignment for Hierarchical Access Control. In CSF
2006.

Crampton, J., 2010. Cryptographic Enforcement of Role-
Based Access Control, In FAST 2010.

Crampton, J., Lim, H., 2008. Role Signatures for Access
Control in Open Distributed Systems. In SEC 2008.

Escala, A., Herranz, J., Morillo, P., 2011. Revocable
Attribute-Based Signatures with Adaptive Security in
the Standard Model, In AFRICACRYPT 2011, pp.224-
241, LNCS 6737. Springer.

Goyal, V., Pandey, O., Sahai, A., Waters, B., 2006.
Attribute-Based Encryption for Fine-Grained Access
Control of Encrypted Data, In Proc of 13th ACM
Conference on Computer and Communications
Security, pp. 89-98, ACM.

Groth, J., 2006. Simulation-sound NIZK proofs for a
practical language and constant size group signatures.
In ASIACRYPT 2006, LNCS 4284, pp. 444–459,
Springer, Germany.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

508

Groth, J., Sahai, A., 2008. Efficient non-interactive proof
systems for bilinear groups, In EUROCRYPT 2008,
LNCS 4965, pp 415-432. Springer.

Ion, M., Russello, G., Crispo, B., 2010. Supporting
Publication and Subscription Confidentiality in
Pub/Sub Networks. In SECURECOMM 2010, pp. 272-
289.

Khader. D., 2007. Attribute Based Group Signature
Scheme. In http://eprint.iacr.org/2007/159, IACR.

Kiviharju, M., 2012. Towards Pervasive Cryptographic
Access Control Models. In SECRYPT 2012.

Maji, H., Prabhakaran, M., Rosulek, M., 2011. Attribute-
based signatures”. In CT-RSA 2011, LNCS 6558, pp.
376–392. Springer.

Okamoto, T., Takashima, K., 2010. Fully secure
functional encryption with general relations from the
decisional linear assumption. In CRYPTO 2010, LNCS
6223, pp. 191–208. Springer.

Okamoto, T., Takashima, K., 2011. Efficient Attribute-
Based Signatures for Non-Monotone Predicates in the
Standard Model, In PKC 2011, LNCS 6571, pp.35-52.
Springer.

Okamoto, T., Takashima, K., 2013. “Decentralized
Attribute-Based Signatures”, In PKC 2013, LNCS
7778, pp.125-142. Springer.

Rissanen E. (ed.),2013. Extensible Access Control
Markup Language (XACML) Version 3.0, OASIS
Standard. In http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf,
OASIS.

Sandhu, R., Bhamidipati, V., Munawer, Q., 1999. The
ARBAC97 model for role-based administration of
roles. In ACM Transactions on Information and
Systems Security, 2(1): 105-135, ACM.

Sandhu, R., Ferraiolo, D., Kuhn, R., 2000. The NIST
Model for Role-Based Access Control: Towards A
Unified Standard. In 5th ACM Workshop on RBAC,
pp. 47-63.

Zhu, Y., Ahn, G-J., Hu, H., Ma, D., Wang, S., 2013. Role-
Based Cryptosystem: A New Cryptographic RBAC-
system Based on Role-Key Hierarchy. In: IEEE
Transactions on Information Forensics and Security.
IEEE.

RBAC�with�ABS�-�Implementation�Practicalities�for�RBAC�Integrity�Policies

509

