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Abstract: Role-based access control (RBAC) is the de facto access control model used in current information systems. 
Cryptographic access control (CAC), on the other hand, is an implementation paradigm intended to enforce 
AC-policies cryptographically. CAC-methods are also attractive in cloud environments due to their 
distributed and offline nature of operation. Combining the capabilities of both RBAC and CAC fully seems 
elusive, though. This paper studies the feasibility of implementing RBAC with respect to write-permissions 
using a recent type of cryptographic schemes called attribute-based signatures (ABS), which fall under a 
concept called functional cryptography. We map the functionalities and elements of RBAC to ABS 
elements and show a sample XACML-based architecture, how signature generation and verification 
conforming to RBAC-type processes could be implemented. 

1 INTRODUCTION 

Role-based access control (RBAC) is very often the 
most practical model for access control, due its 
versatility, dynamics and accurate modelling of real 
world problems. RBAC policies are traditionally 
enforced by a concept called reference monitor 
(RM), which is instantiated as a security kernel, 
typically operating system components. 

The usual problem of security kernels is that they 
need to implement the assumptions of an abstract 
entity (the RM), which include non-passability, 
ubiquity, and verifiability (leading to high assurance 
in its correct and secure functioning). In today’s 
highly distributed and heterogeneous environments 
achieving these goals become either very expensive 
or highly localized and suitable for special cases 
only. 

Cryptography, on the other hand, offers high 
assurance on some aspects and is cost-effective to 
implement. Solving access control problems with 
cryptography is called cryptographic access control 
(CAC), or when applied to RBAC directly, CRBAC. 
Most of the work on CRBAC focuses on enforcing 
confidentiality policies or high level models, but 
there is a “middle ground”, between theory and 
actual cryptographic schemes, that is almost entirely 
lacking in current literature. 

Our aim in this paper is to bridge this gap by 
presenting a mapping for CRBAC integrity policies 
from existing standards to existing cryptographic 
schemes, as well as study their limitations. (By 
“integrity policies” we mean that the RBAC 
permission enforced is the write-permission, and 
consider relatively static documents as the RBAC 
objects.)  

A recent cryptographic innovation called 
functional cryptography, including such concepts as 
attribute-based encryption (ABE, (Goyal, 2006)) and 
attribute-based signatures (ABS), resolves many 
requirements and operations in the RBAC-model. 
Our contributions in this paper are as follows: 

1) We investigate the practicalities of existing 
ABS schemes w.r.t integrity policy enforcement 
in reality, including status quo and some 
overlooked details. 

2) We provide an implementation model, which is 
based on the XACML 3.0 reference architecture 
(Rissanen, 2013), collaboratively managed 
documents in a publish-subscribe-model and 
cloud storage; and which can be used to enforce 
access control cryptographically for write-
permissions with ABS. We use a widely 
adopted standard in order to show the feasibility 
to transform existing systems or create new 
systems for the CAC paradigm. 
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3) We show how different RBAC standard model 
elements and commands can be realized in 
CAC with different ABS-methodologies. 

Our main motivation in researching ways to 
implement RBAC using mainly cryptographic 
controls is the possibility to move the wealth of 
existing practice and experience invested in RBAC to 
an implementation paradigm, which is remarkably 
more suitable for current cloud environments.  

2 PRELIMINARIES 

RBAC (Sandhu, 2000) is an access control model, 
which decouples the user (subject) relations to 
protected objects via a role. We use the RBAC 
model and terminology described in the RBAC-
standard by INCITS (ANSI, 2012) (currently the 
consolidated version referred to as RBAC3), and 
restrict ourselves to the administrative commands of 
the standard in the Core RBAC for brevity. We do, 
however, consider Hierarchical and Constrained 
RBAC in the structure and functionality they 
provide to the whole, but not their dynamics (e.g. 
adding inheritance relations or modifying dynamic 
separation-of-duty- sets). Note that we include the 
concept of an administrative role from ARBAC 
(Sandhu, 1999).  

The RBAC-standard includes a multitude of 
commands to create, maintain and report the 
necessary elements and their mappings. The relevant 
commands we consider are from the Core RBAC, 
together 13 different commands (see Table 3). 

For the purpose of RM-implementations and 
architecture, we refer to the XACML reference 
architecture (Rissanen, 2013) and elements, 
specifically: Policy Enforcement Point (PEP), Policy 
Decision Point (PDP), Policy Administration Point 
(PAP) and Policy Information Point (PIP)  

3 CRYPTOGRAPHIC ACCESS 
CONTROL 

3.1 General 

Following the access control meta-model presented 
in (Barker, 2009) we may assume that there exists a 
(countable) set of action types, which can be 
associated with 
 resource types, jointly called permissions (to 

perform some action on a resource) 

 resource and principal types, jointly called 
authorizations (for a principal to have a 
permission),  

For many practical access control policies it is 
justifiable to present subsets of permissions as 
combinations of only two types of actions (read 
and write), and a categorization of resource types 
into data and metadata levels s.t. some combination 
of these two rights together with appropriate 
decomposition of the resource translates to the 
original permission. For example, all the permission 
types used in MS SQL Server 2000 DBMS, Linux, 
Windows 7 and Bell-laPadula model were mapped 
in (Kiviharju, 2012) to a subset of permissions such 
that the subset of actions used was {read, 
write}. The motivation and background for this 
kind of decomposition was to be able to enforce 
more policy types than just pure confidentiality and 
integrity policies with cryptography. 

3.2 CAC Models and Related Work 

The work on CAC models traditionally has focused 
on information flow control (IFC) policies and key-
assignment schemes (Crampton, 2006; Atallah, 
2009). CRBAC is addressed for example in 
(Crampton, 2006), where it is shown that hierarchical 
key assignment schemes (HKAS) for IFC can also be 
used to enforce read-rights in RBAC, and that each 
ABE-policy also has a HKAS-enforced RBAC-
policy. The converse, however, is not shown. 

The authors in (Zhu, 2011) develop a 
cryptographic security model for CRBAC, and they 
also map the RBAC commands to predicate 
encryption (PE) scheme functionalities. The 
CRBAC-paper, too, is somewhat detached from 
actual crypto scheme practicalities: for example role 
revocation entails assigning new attributes for roles 
and complete re-encryption of the part of content, 
which is both inefficient and against the principles of 
any IBE-related scheme (i.e. identities should not be 
changed). 

Cryptographic signatures for CRBAC have been 
considered for example in (Crampton, 2010), but 
only for inter-domain authorization in the manner of 
attribute certificates.  

The work in (Crampton, 2008) gives a general 
framework for a role key hierarchy usable for 
encryption, signing and authentication. Their 
viewpoint is rather on how to assign keys for 
different cryptographic policies based on RBAC 
policies (although for encryption, this is equivalent 
for actually enforcing RBAC policies). 
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3.3 Signatures and Integrity 

Digital signatures are a class of public-key 
cryptographic primitives that work towards 
providing assurance of the origin authenticity of a 
message (= “Did the claimed entity produce this 
message?”). One of the more modern classes 
includes functional signatures (FS) and their 
subclass, attribute-based signatures (ABS). They 
raise the abstraction level for the authenticity to be 
dependent on more general attributes (=”Was this 
message produced in reality with the claimed 
authorization?”). We postulate that enforcing the 
write -permission cryptographically in the current 
RBAC-model is most practically performed via ABS 
schemes. 

Protecting data integrity cryptographically with 
digital signatures has three main goals: to provide 
the verifier assurance of the data origin authenticity, 
the absence of unauthorized modifications and also 
of the content validity (as in: how accurate the 
information itself is). In the case of conventional 
signatures, where there is only one “attribute” (the 
user identity) provided, these facets of integrity are 
equal. However, in the attribute-based setting the 
verifier may have a different concept of which 
combination of attributes are sufficient to prove the 
validity of the content than the combination used to 
prove authenticity, such that the verifier would like 
to specify the policy under which she verifies. The 
problem is akin to the key-/ciphertext policy dualism 
used in attribute-based encryption (ABE). 

The current ABS-/FS-constructions aim to prove 
data origin authenticity, thus they tie the policy to 
the signing key, conforming to the key-policy model 
(abbreviated here KP-ABS). Thus currently the 
verifier is not able to select the policy (see table 1). 

From the perspective of access control, content 
validity via a scrutiny of content producers is more 
akin to creating and viewing log files. The 
associated permissions then are append, read, 
edit and delete to the log file resource class. 
Thus for the general write -permission, the history 
and individual signers can be left out of scope. 

4 RBAC AND ABS 

4.1 General 

Attribute-based signatures (ABS) were introduced as 
a concept in 2007 (Khader, 2007). With ABS, the 
signer can prove the authenticity via a predicate over 

attributes rather than his/her identity. The 
distinguishing feature of ABS over related concepts 
is the ability to provide unforgeability, signer (and 
policy) privacy and collusion prevention all at the 
same time. Collusion prevention is especially 
important in filling a loophole present in CAC in 
general: reference monitors are able to separate 
different users with (RBAC-/login-)sessions, but 
CAC schemes need to differentiate between users 
via other methods, such as personalized credentials. 

The first full-fledged ABS was the scheme by 
Maji et al. (Maji, 2011). On the technical side, it 
appears that ABS can be realized either via non-
interactive proof techniques or based on encryption 
schemes. (ABE is a derivative of IBE, and enjoys a 
natural definition for signatures, where one creates a 
one-time key-pair using the message (or hash of it) 
as the public key and the private key as the 
signature, making the IBE/ABE “master key” the 
signing key). The latter technique offers signatures 
an order of magnitude shorter than proof techniques. 

The ABS scheme employed here is the scheme in 
(Maji, 2011), referred to as MPR-ABS. Its basic 
concepts include 
 Credential bundles, which are personalized 

per-attribute private keys (personalization is 
performed e.g. by prepending globally unique 
user identifiers to attribute information and 
signing them with Boneh-Boyen signatures 
(Boneh, 2004) and the actual attribute private 
keys) 

 Claim predicates, which are essentially policy 
formulas applied to the attributes / credential 
bundles. They are an analogue of access 
control policies and RBAC active roles in that 
they can restrict, which attributes user is 
allowed to use and which not. 

Related to an issue discussed above (the content 
validity) is the concept of individual non-
repudiation: if someone has misused her authority to 
sign content on false grounds, there should be a 
mechanism to uncover the individual signer behind 
the attributes. Non-repudiation is, in general, not 
incorporated in ABS-schemes: although individual 
signers have personalized key-material (e.g. 
credential bundles in (Maji, 2011)), this is in the 
form such that the personalization is not easily 
extractable (e.g. the signed identifier-attribute 
combinations in (Maji, 2011). While this feature can 
be used for testing suspect individuals (if the 
attributes used are known), it cannot be used to 
directly extract the user identities behind the 
signature. There are specific signature schemes to 
accomplish this, such as (Escala, 2011), but these are 
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separate building blocks not easily integrated to 
other functions. 

Typical of all ABS schemes is that they are 
inherently group signatures, and that the attributes, 
the policy or both are tied to “manager”-level private 
keys. If these master keys are under the authority of 
one entity, it is usually referred to as signature 
trustee. 

ABS schemes have one common security goal, 
unforgeability. Other goals are different privacy-
related goals: verifiers should not be aware, or 
extract from the signature (without additional 
information) the individual signer within a group of 
signers, or the policy under which the signing was 
performed. Arguably it is case-specific, whether the 
access control policy itself should be public or not, 
but we find it more natural and more convincing, if 
the verifier is given the formula which the signature 
was generated with. (This type of privacy is possible 
to incorporate via e.g. DFS (Backes, 2013), but for 
simplicity, we use schemes that do not allow policy 
privacy). 

4.2 ABS Relation to Policies  

In functional cryptography in general it is possible to 
specify, when and where the access control policy is 
cryptographically possible to encode. The main 
categories are key- and ciphertext policies (KP and 
CP, respectively), although mixtures exist as well. In 
the KP-model, the policy is encoded in the private 
key and in the CP-model to the ciphertext. Signature 

schemes bring more variety to the policy. Ideally 
policies can be: 
 encoded to the private key or the signature 
 selected by the signer or the verifier 
 can be private of public  

The suitability for ABS for enforcing RBAC is 
explored below, in table 1, with properties relevant 
to RBAC enforcement given. The conventions used 
in the table are as follows: S = individual signer, V = 
verifier, K = private key of S, σ = signature, p = 
policy, Ts = signature trustee, Is = identity of S, IA = 
identity of attributes.  

From Table 1 it can be seen that signature 
schemes, which are able to enforce authenticity 
based on policies / attributes can be divided into two 
categories: original ABS and functional signatures 
(FS). The fundamental difference (policy-wise) 
between these is that ABS divide the policy 
enforcement into two: first creating the attribute 
private keys and the user randomization (performed 
by the signature trustee), and then allowing the 
signer to select the policy (as far as his attributes 
allow). FS schemes have the signature trustee 
generate the policy and embed that into the user key. 
Only the DFS-scheme can be used in such a manner 
that some policy-defining power is given to the 
individual signer (although it is not intended for 
such a purpose). 

In the RBAC-model user is decoupled from the 
resource via the role. Thus user assignment and role 
activation need to be performed separately. In ABS 
this decoupling is naturally present via attribute 

Table 1: Policy encoding and processing properties of the main ABS/FS schemes.

Scheme  Novelties  Policy 
Encoding 

Policy 
Selection 

Process 
privacy  

(1)
 

Policy expressiveness  Main 
technique 

MPR‐ABS (a)  First ABS  σ  S IS, IA Monotonic Boolean 
formulas over attributes 

NIWI (h)

DMA‐ABS (b)  No signature trustee   σ  S IS Non‐monotonic Boolean 
formulas over attributes 

DMA‐FE (b)

NM‐ABS (c)  Non‐monotonicity, small 
signature size 

σ  S IS Non‐monotonic Boolean 
formulas over attributes 

CP‐FE (i)

R‐ABS (d)  “Revocability” (of anonymity 
of individual signer) 

σ  S IS
(6)

Monotonic Boolean 
formulas over attributes 

NIWI (h)

PBS (e)  All policy languages in P  K, σ  TS p, IS, (IA) P‐language over 
messages 

Groth‐Sahai 
Proofs (h) 

FS (f)  Signature size independency 
of policy size 

K, σ  TS p, IS, (IA) All policies expr. with a 
poly‐size circuit 

NIZKAoK (j)

DFS (g)  Delegation, limited 
malleability 

K
(3)
, σ  S,TS

(2)
p
(5)
, IS

(4)
, (IA) Efficiently computable 

functions 
NIZK required 
(k) 

(1): The elements, which are hidden from the verifier (in parenthesis, if not applicable)
(2): Signature trustee is able to assign a family of func. to the signer to delegate further 
(3): The delegation key with restrictions on the functionalities allowed to be delegated 
(4): Including delegated signers 
(5): Policy is public for intermediate signers 
(6): Unless revoked 

a: (Maji, 2011) 
b: (Okamoto, 
2013) 
c: (Okamoto, 2011) 
d: (Escala, 2011) 
e: (Bellare, 2014) 
f: (Boyle, 2013) 

g: (Backes, 2013)
h: (Groth, 2008) 
i: (Okamoto, 2010) 
j: (Bitansky, 2013) 
k: (Groth, 2006) 
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private keys generation and user (process) applying 
allowed policies. In FS, the signature trustee will 
need to generate new private keys per each new set 
of active roles. DFS (Backes, 2013) can be 
employed for a similar purpose, but for simplicity 
we select ABS as the schemes of choice in our 
implementation model. 

The ABS and FS have differences in the 
complexity of the policy they are able to express. 
ABS (including non-monotonic ABS) are limited to 
the class NC1. FS-schemes are able to represent 
general Boolean circuits in complexity class 
NC ⋃ NC . PBS extends this class of functions 
even further. The advantage of using larger circuits 
lies in the fact that some problems are not known be 
contained within NC1 (such as graph reachability, 
which is known to be in NC2 only). The most 
common operators, AND, OR, NOT, =, <, >, ADD, 
MUL, DIV, EXP, LOG, keyword search and 
regexp are contained within NC1. With these, an 
overwhelming percentage of real-life access control 
policies can already be expressed, and thus there is 
no need to go to general circuits from the 
perspective of this paper. 

5 IMPLEMENTATION MODEL 

5.1 RBAC Model Mapping 

The RBAC model is, as such, functionally more 
fine-grained than using encryption schemes and 
signatures without distributing keying material to 
more than one entity type. For example, the model 
Supporting System Functions require that active 
roles can be changed within a session, if e.g. 
environmental conditions change.  

If the CAC implementation uses only a single 
claim-predicate for the user per session, her 
signatures will either be accepted during the session 
or not – if a role should be deactivated, the user 
needs to “log out” or request a new claim-predicate. 
We introduce a remedy for this in the session 
management description. 

The different RBAC elements and functions are 
mapped to ABS elements in Tables 2 and 3. Some of 
the most crucial concepts are elaborated here. 

Role: The attributes are natural embodiments for 
roles (visible also in the XACML-architecture) – 
however, there is the question whether to bundle 
attributes into sets to map to one role in CAC. 
Considering that the reference monitor also makes 
access choices based on logical formulas over roles, 
this principle carries easily to CAC as well. An 

additional note for roles is that in ABS-schemes, 
each attribute has a private key. This is not directly 
used by an individual signer, but they are needed in 
the signing process, as the verification is based on 
attributes (rather, their public keys) only. 

Table 2: RBAC elements mapping. 

 

Session management: The purpose of the 
Session-concept in RBAC is to model different 
profiles for a user. Profiles include different active 
roles, but they are normally activated in the same 
batch as the session is created. From the CAC 
perspective, different sessions are modelled via 
giving the user multiple identities (which could be a 
login ID formed by concatenating the user’s 
personal identity with her current profile identity). 
When a session is created, it is automatically 
assigned a default set of active roles. In CAC, and 
particularly in ABS, this corresponds to defining a 
claim-predicate over the attributes (essentially a 
Boolean formula of how and which attributes are 
used). Any change in the active roles (whether it 
happens inside a session or via re-establishing a 
session) requires establishing a new claim-predicate. 
We note that in the current schemes nothing 
prevents the signer from selecting a suitable claim-
predicate. Ideally, the claim-predicate itself should 
be time-stamped and authenticated by the signature 
trustee, or equivalent OBJ-subdomain (see the next 
chapter for the subdomains definition) controller. 

Session separation: Different sessions will be 
separated from each other based on the personalized 
credential bundles (with differing login IDs, if 
needed). 

User assignment: User can be assigned to the 
role without yet activating the role. In this mapping 
UA means delivering the user an item of the  

KP-ABS ([MPR10] by default)

Object Document / Message / Content

Operation write
Permission Private key existence for an attribute
User User
Role Attribute
Session (differentiator) User credential bundle personalization
Session (active roles) User's possession of her personalized credentials 

(with a given attribute set) and a defined claim-
predicate

PA Attribute secret key creation
UA User's possession of personalized credentials (with 

a given attribute)
Role Hierarchy Static hierarchy: Attribute delegation
Admin role Role on metadata
Static SoD Non-monotonic claim-predicates (NM-KP-ABS, 

[Oka11])
Dynamic SoD Non-monotonic claim-predicates (NM-KP-ABS, 

[Oka11])
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Table 3: RBAC commands mapping. 

 

credential bundle corresponding to the attribute, to 
which user is assigned. 

Revocation: Revocation means in this context the 
deletion of a user assignment or the role-permission 
association (session-related changes require only 
changing the claim-predicate). In order to define 
revocation in CAC for the write-permission, we 
recall that the policy enforcement is performed in 
two locations: the OBJ-subdomain to allow access 
to current private key material in the first place, and 
then in the USR-subdomain to actually check the 
validity of the signature. Since the signing operation 
as such can be performed by anyone who is familiar 
with the signing scheme, denying a revoked user 
access to the signing software/hardware per sé does 
not solve the problem, if the receiving end does not 
perform her verification duties. Thus the revocation 
needs to somehow communicate the revoked / 
outdated status of the attributes or users to the 
verifying parties. There are two possibilities for this: 
time-stamped attributes and revocation list 
distribution. Handling the revocation in CAC with 
write is notably simpler than with read, since the 
main part of the enforcement is always performed by 
non-revoked (and thus benevolent) principals, and it 
is even possible to extend the domain of revoked 
content beyond the moment of compromise 
detection.   

A problem with revocation arises, when / if the 
read-permission is also enforced cryptographically, 
and ciphertext revocation is used. Ciphertext 
revocation assumes the use of functional encryption 
and provides a way to re-encrypt ciphertexts to be 

compatible with a new FE-key. We assume hybrid 
encryption (content encrypted with symmetric 
algorithm and the symmetric key with FE), leaving 
the content signatures unchanged. However, if the 
keying material is also authenticated, there will arise 
a need to resign it. To address this, there is a concept 
called sanitizable signatures (SSS, explained e.g. in 
(Backes, 2013)), which basically allow replacement 
of structured content elements (not removal or 
adding as such). In SSS, the modifier creates 
additional signatures such that they can be verified 
under the original public key, but the verifier is not 
able to extract any information of the content 
previously signed – in this case the encrypted 
content key before ciphertext revocation. The 
delegatable functional signatures (DFS (Backes, 
2013)) also encompass SSS, and they can be viewed 
as the attribute-based extension of SSS. 

Should a verifier come across content with an 
invalid or revoked signature, he should merely 
ignore it and request another copy of the content.  

Administrative roles (AR): these are roles that are 
can create, manage and delete other roles. They can 
be supported via CAC applied to RBAC metadata, 
e.g. by attaching AR-signatures to a managed role’s 
attribute and permission descriptors. 

5.2 XACML-Conformant Architecture 

There are three different subdomains: SIG, Channel 
and VRF, for the signer, storage medium and 
verifier functions, respectively. The model depicts a 
publish-subscribe type of environment, where 
information is first requested to be published, and 
the request for subscribing and decryption only 
follows afterwards. Publishers and subscribers are 
usually not assumed to establish contact or exchange 
keying material after the initial handshakes (Ion, 
2010). The requesting application for publishing is 
depicted in the SIG-subdomain, and the subscriber 
in the VRF-subdomain, whereas the Channel 
subdomain is responsible for the storage. 

Using signatures is essentially a two-party 
protocol, involving both the signer and the verifier. 
As such, it is not sufficient to have correct private 
keys in order to publish authorized material – the 
verifier action is also needed (in case the signer uses 
outdated or revoked keys, for example). Thus the 
enforcement function is necessarily decoupled for 
write in CAC.  

The most frequently used definitions for the 
XACML Core specification (Rissanen, 2013) data 
flow architectural elements (the XACML 
specification itself, RFC 3198, RFC2904, RFC2753 

RBAC command Applicable function(s)
AddRole Role mgmt and PAP function

GrantPermission Create private key for an attribute

AddUser User mgmt function
AssignUser Generate user's (new) credential bundle
CreateSession Create user's current claim-predicate
AddActiveRole Change user's claim predicate
CheckAccess SIG-subdomain: sign; VER-subdomain: Try fetch 

an instance of the signed content from the 
Channel and verify it

DropActiveRole Change user's claim predicate
DeleteSession Invalidate user's claim-predicate
DeassignUser (with 
loss of auth. [8])

For the deassigned role: Exclude user from next 
credential bundle update (time-stamped attribute 
names) and/or Revocation list distribution

DeleteUser User mgmt function + DeassignUser (for all its 
roles)

RevokePermission Exclude attribute from next attribute private key 
update (time-stamped attribute-names) and/or 
Revocation list distribution

DeleteRole Role mgmt and PAP function + RevokePermission 
for all the permissions of the role
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and ISO 10181-3) do not place restrictions on the 
policy handling point locations as such. Thus we 
conclude that the decoupling of PEP is not against 
any previous models, only outside them. The VRF-
subdomain is depicted in Figure 1. 

 

Figure 1: The architecture VRF-subdomain. 

The verification subdomain (VRF) is responsible 
for the decisions whether the content fetched from 
the Channel is available, endowed with valid 
signatures and whether to re-fetch another instance 
from the Channel. Mapping verification to 
XACML-functionality is as follows: 
 PDP: Verification of the signature requires 

information of the policy against which the 
decision is made, and is inherently a decisional 
function. Although the verification value needs 
to be computed, the computation is based on 
the information attached to the content. From 
the XACML perspective this becomes then the 
responsibility of PDP. Other components, such 
and PEP and PIP should not be base their 
actions on the policy, although they may try to 
forward it. PDP may get the policy from a 
common policy store in the Channel as well. 
PDP is assumed to maintain some bookkeeping 
of the document instances such that in the case 
of verification failure it can deduce whether it 
is feasible to find valid instances in the 
Channel. PDP is also assumed to return its 
decision as belonging to the set: {verified, 
retry, non-verified}. 

 PIP: the role of PIP is to gather environmental 
and object-related attributes. For the purpose of 
verification of content, all the relevant 
attributes and policies are (at least with the case 
of ABS and FS) carried with or encoded in the 

signature. This leaves little responsibilities for 
the PIP; it may, signature scheme allowing, try 
to extract the attributes and policy from the 
signature. 

 PEP: since the document verification itself is 
left for the PDP, PEP is left mainly with 
forwarding requests and responses. However, if 
PDP returns retry, PEP will reissue the content 
retrieval from the Channel. 

 ContH: In XACML, the context handler 
responsibility is to fetch the actual resource and 
combine the necessary attributes, policies and 
resource into one coherent resource context. 
The only major change in its operation is the 
way it is fetching the resource: it is not a local 
disk or database-query, but rather a 
subscription from a cloud-based environment 
(the Channel). 

PAP, PS and Application roles and functions need 
not be changed. 

The signing (SIG) subdomain has the main 
responsibility of enforcing the write-permission. 
In order to be able to separate user assignment from 
role activation (as described in the model mapping) 
in MPR-ABS scheme functionality, the claim 
predicate needs to be separately controlled. In the 
MPR-ABS, the claim predicate can effectively be 
freely selected by the signer (his attributes 
allowing), which is more coarse-grained control than 
the role activation functionality in RBAC requires. 
Thus in our model we employ trusted computing 
base (TCB), which controls the claim predicate. In 
the verification phase the VRF-subdomain needs to 
ascertain that TCB was indeed used in the selection 
of the claim predicate. This requires further that the 
claim-predicate can be satisfied only if it includes 
attributes in possession of only the TCB. This in turn 
assumes that TCB and user attributes can be 
combined, which is against the collusion prevention 
principle usually employed in attribute-based 
cryptography. There are both scheme-dependent 
techniques to accomplish this kind of 
combination/collusion in a controlled setting and 
more general ways for less expressive formulas 
using secret sharing schemes, but these techniques 
are outside the scope of this paper. In the 
verification phase the VRF-subdomain needs to 
ascertain that TCB was indeed used in the selection 
of the claim predicate. This requires further that the 
claim-predicate can be satisfied only if it includes 
attributes in possession of only the TCB. This in turn 
assumes that TCB and user attributes can be 
combined, which is against the collusion prevention 
principle usually employed in attribute-based 
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Figure 2: The architecture SIG-subdomain. 

cryptography. There are both scheme-dependent 
techniques to accomplish this kind of 
combination/collusion in a controlled setting and 
more general ways for less expressive formulas 
using secret sharing schemes, but these techniques 
are outside the scope of this paper. 

An alternative way of restricting the signer 
capability in selecting the claim predicate is to 
integrate the predicate directly in to the private key, 
as done in FS and DFS. This scenario requires a 
more available and more broadband connection to 
the signature trustee, and thus not considered here. 
The SIG-subdomain is depicted in Figure 2.  
 PDP: PDPs in both portions are responsible for 

translating the current policy and attributes into 
a decision, whether individual currently valid 
signing keys (credential bundles) can be 
released or not. They also communicate 
attribute private keys to the PEP to use in the 
actual creation of the bundles. PDPTCB 
communicates the active roles information in 
the form of claim predicate, to PEPTCB. 

 PIP: PIPs role is not changed from reference 
monitor realm here. 

 ContH: Context handler relays and formats the 
material it handles, it’s role in CAC is not very 
significant. 

 Application: The application (on the user level) 
is responsible for coordinating the credential 
bundle retrieval and for requesting the final 
signing. It also publishes the signed document 
to the channel. The user application will act as 
the XACML application for both the TCB and 
KPF portions of the SIG-subdomain.  

Some of the tasks are global (we are assuming only 
one attribute authority), such as granting permissions 
for a role, which translates to attribute private key 
generation. This is implicitly a PAP function and the 
necessary information is incorporated in the policy 
received from the policy store. 

6 EFFICIENCY 
CONSIDERATIONS 

A cryptographic scheme is a prescription of 
operations (on varying levels of abstraction) that 
should be realized in order to have an actual 
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instantiation of the scheme, i.e. it would need to be 
programmed or burned into a chip. 

ABS is mostly based on special elliptic curve 
groups (ECG) and so-called pairing functions applied 
to them. There are even existing libraries realizing 
some ABE schemes already, such as (Bethencourt, 
2011). We have investigated previously the 
bandwidth and computational efficiency of existing 
schemes on different security levels, and combining 
them with results given in (Okamoto, 2011), we can 
give some figures for 128-bit security parameter and 
access control structure of size 10 (as in number of 
clauses): 
 ABGS (Khader, 2007) (ABE-based, aver.case): 

0,9 kB 
 MPR-ABS (Maji, 2011) (NIZK-based, worst 

case): 23,5 kB 
 MPR-ABS (Maji, 2011) (NIZK-based, best 

case): 1,5 kB 
 NM-ABS (Okamoto, 2011) (FE-based, best 

case): 81 B 
For implementation purposes the NIZK-based ABS 
are clearly far less efficient than encryption-based 
ABS. However, we believe that moving to 
cryptographically enforced RBAC is no longer just a 
feasibility study, but something that merely needs 
integration work to make an actual demonstrable 
system. 

7 CONCLUSIONS 

Our research shows that current ABS-schemes can 
already support the Core RBAC, in a distributed 
implementation model and considering the write-
permission. There are problems still, especially with 
dynamic hierarchies and providing support to both 
role activation separation from user assignment; and 
strict control of role activation at the same time. The 
Core RBAC commands can be simulated with ABS, 
indicating a feasible transformation for RBAC 
systems from RM to CAC. 

The ABS are a sufficient and necessary class of 
signature schemes for implementing the most 
common access control needs and policies. The 
reasons for going beyond ABS to FS would include: 
 Complex policies requiring evaluation of 

arguments beyond NC1 
 Moving the claim-predicate enforcement from 

trusted hardware to key management (and 
accepting a more frequent or hierarchical key 
updates)  

Future work will include e.g. designing 
cryptographic schemes more suitable for content 
validation, where the verifier is able to select the 
policy (instead of signer). 
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