Twodimensional Visualization of Discrete Time Domain Intervals Subject to Uncertainty

Christophe Billiet, Guy De Tré

2014

Abstract

One of the most important purposes of information systems is to allow human users to retrieve their data or information or knowledge derived from their data. These data may be subject to imperfections and often represent time indications, as time is an important part of reality. Representations of time indications rely on the information system's time domain. Obviously, the effectiveness of an information system in retrieval context depends greatly on the interpretability of the presentation of its data, information or knowledge. For that reason, such data, information or knowledge is usually visualized. The work presented in this paper proposes a novel approach to visualize time domain intervals subject to uncertainty and also shows how temporal reasoning with these visualizations can be done. The presented novel approach considers gradual confidence in the context of uncertainty and is specifically designed for time domain intervals.

References

  1. Aigner, W. and et al. (2005). PlanningLines: Novel Glyphs for Representing Temporal Uncertainties and their Evaluation. In Proc. of the 9th Int. Conf. on Information Visualisation, pages 457-463.
  2. Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26:832-843.
  3. Allen, J. F. (1991). Time and time again: The many ways to represent time. International Journal of Intelligent Systems, 6(4):341-355.
  4. Billiet, C., Pons, J. E., Pons Capote, O., and De Tré, G. (2012). Evaluating Possibilistic Valid-Time Queries. In Proceedings of the 14th International Conference IPMU, Part I, pages 410-419, Catania, Italy. Springer.
  5. Billiet, C., Pons Frias, J. E., Pons, O., and De Tré, G. (2013a). Bipolarity in the Querying of Temporal Databases, pages 21-37. SRI PAS/IBS PAN, new trends edition.
  6. Billiet, C., Pons Frias, J. E., Pons Capote, O., and De Tré, G. (2013b). Bipolar Querying of Valid-Time Intervals Subject to Uncertainty. In Lecture Notes in Computer Science, pages 401-412, Granada, Spain. Springer.
  7. Bolour, A., Anderson, T. L., Dekeyser, L. J., and Wong, H. K. T. (1982). The role of time in information processing: a survey. ACM SIGMOD Record, 12:27-50.
  8. Bronselaer, A., Pons, J. E., De Tré, G., and Pons, O. (2013). Possibilistic evaluation of sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 21(3):325-346.
  9. De Tré, G. and et al. (2012). Visualising and Handling Uncertain Time Intervals in a Two-dimensional Triangular Space. In Proceedings of the 2nd World Conference on Soft Computing, pages 585-592, Baku, Azerbaijan.
  10. Dyreson, C. and et al. (1994). A consensus glossary of temporal database concepts. SIGMOD Rec., 23:52-64.
  11. Dyreson, C. E. and Snodgrass, R. T. (1998). Supporting Valid-Time Indeterminacy. ACM Transactions on Database Systems, 23(1):1-57.
  12. Galton, A. (1990). A Critical Examination of Allen's Theory of Action and Time. Artificial Intelligence, 42(2- 3):159-188.
  13. Garrido, C., Marin, N., and Pons, O. (2009). Fuzzy intervals to represent fuzzy valid time in a temporal relational database. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 17(SUPPL. 1):173-192.
  14. Jensen, C. and et al. (1998). The consensus glossary of temporal database concepts - Feb/ 1998 version. In Lecture Notes in Computer Science, pages 367-405.
  15. Kincaid, R. and Lam, H. (2006). Line Graph Explorer: Scalable Display of Line Graphs Using Focus+Context. In Proceedings of the Working Conference on Advanced Visual Interfaces, pages 404-411.
  16. Kulpa, Z. (2006). A diagrammatic approach to investigate interval relations. Journal of Visual Languages and Computing.
  17. Matkovic, K. and et al. (2007). Color Lines View: An Approach to Visualization of Families of Function Graphs. In Proceedings of the 11th International Conference on Information Visualization, pages 59-64.
  18. Pons, J. E. and et al. (2012). A Relational Model for the Possibilistic Valid-time Approach. International Journal of Computational Intelligence Systems, 5(6):1068- 1088.
  19. Qiang, Y. and et al. (2010). Handling imperfect time intervals in a two-dimensional space. Control and Cybernetics, 39(4):983-1010.
  20. Qiang, Y. and et al. (2012). Interactive analysis of time intervals in a two-dimensional space. Information Visualization.
  21. Saito, T., Miyamura, H. N., Yamamoto, M., Saito, H., Hoshiya, Y., and Kaseda, T. (2005). Two-tone pseudo coloring: Compact visualization for one-dimensional data. In Proceedings of the IEEE Symposium on Information Visualization, pages 173-180.
  22. Van De Weghe, N., Docter, R., De Maeyer, P., Bechtold, B., and Ryckbosch, K. (2007). The triangular model as an instrument for visualising and analysing residuality. Journal of Archaeological Science.
Download


Paper Citation


in Harvard Style

Billiet C. and De Tré G. (2014). Twodimensional Visualization of Discrete Time Domain Intervals Subject to Uncertainty . In Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014) ISBN 978-989-758-053-6, pages 137-145. DOI: 10.5220/0005124701370145


in Bibtex Style

@conference{fcta14,
author={Christophe Billiet and Guy De Tré},
title={Twodimensional Visualization of Discrete Time Domain Intervals Subject to Uncertainty},
booktitle={Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)},
year={2014},
pages={137-145},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005124701370145},
isbn={978-989-758-053-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)
TI - Twodimensional Visualization of Discrete Time Domain Intervals Subject to Uncertainty
SN - 978-989-758-053-6
AU - Billiet C.
AU - De Tré G.
PY - 2014
SP - 137
EP - 145
DO - 10.5220/0005124701370145