Localization of Visual Codes in the DCT Domain Using Deep Rectifier Neural Networks

Péter Bodnár, Tamás Grósz, László Tóth, László G. Nyúl

2014

Abstract

The reading process of visual codes consists of two steps, localization and data decoding. This paper presents a novel method for QR code localization using deep rectifier neural networks, trained directly in the JPEG DCT domain, thus making image decompression unnecessary. This approach is efficient with respect to both storage and computation cost, being convenient, since camera hardware can provide JPEG stream as their output in many cases. The structure of the neural networks, regularization, and training data parameters, like input vector length and compression level, are evaluated and discussed. The proposed approach is not exclusively for QR codes, but can be adapted to Data Matrix codes or other two-dimensional code types as well.

References

  1. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proc. AISTATS. pp. 249-256 (2010)
  2. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proc. AISTATS. pp. 315-323 (2011)
  3. Hinton, G. E., Osindero, S., Teh, Y. W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527-1554 (2006)
  4. LeCun, Y., Bottou, L., Orr, G., Muller, K. R.: Efficient backprop. In: Orr, G., K., M. (eds.) Neural Networks: Tricks of the trade. Springer (1998)
  5. Lin, D. T., Lin, C. L.: Automatic location for multi-symbology and multiple 1D and 2D barcodes. Journal of Marine Science and Technology 21(6), 663-668 (2013)
  6. Ohbuchi, E., Hanaizumi, H., Hock, L. A.: Barcode readers using the camera device in mobile phones. In: Cyberworlds, 2004 International Conference on. pp. 260-265 (2004)
  7. Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural networks for conversational speech transcription. In: Proc. ASRU. pp. 24-29 (2011)
  8. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for smartphones. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia. pp. 11:1-11:8. MUM 7813 (2013)
  9. Szentandrási, I., Herout, A., Dubská, M.: Fast detection and recognition of qr codes in highresolution images. In: Proceedings of the 28th Spring Conference on Computer Graphics. pp. 129-136. SCCG 7812 (2013)
  10. Tekin, E., Coughlan, J.: A bayesian algorithm for reading 1D barcodes. In: Proceedings of the 2009 Canadian Conference on Computer and Robot Vision. pp. 61-67. CRV 7809, IEEE Computer Society, Washington, DC, USA (2009)
  11. Wallace, G. K.: The JPEG still picture compression standard. Consumer Electronics, IEEE Transactions on 38(1), xviii-xxxiv (Feb 1992)
  12. Wang, K., Zou, Y., Wang, H.: Bar code reading from images captured by camera phones. In: Mobile Technology, Applications and Systems, 2005 2nd International Conference on. p. 6 (2005)
Download


Paper Citation


in Harvard Style

Bodnár P., Grósz T., Tóth L. and G. Nyúl L. (2014). Localization of Visual Codes in the DCT Domain Using Deep Rectifier Neural Networks . In Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014) ISBN 978-989-758-041-3, pages 37-44. DOI: 10.5220/0005125700370044


in Bibtex Style

@conference{anniip14,
author={Péter Bodnár and Tamás Grósz and László Tóth and László G. Nyúl},
title={Localization of Visual Codes in the DCT Domain Using Deep Rectifier Neural Networks},
booktitle={Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)},
year={2014},
pages={37-44},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005125700370044},
isbn={978-989-758-041-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)
TI - Localization of Visual Codes in the DCT Domain Using Deep Rectifier Neural Networks
SN - 978-989-758-041-3
AU - Bodnár P.
AU - Grósz T.
AU - Tóth L.
AU - G. Nyúl L.
PY - 2014
SP - 37
EP - 44
DO - 10.5220/0005125700370044