REFERENCES
Akbani, R., Kwek, S., and Japkowicz, N. (2004). Applying
support vector machines to imbalanced datasets. In
Proc. of ECML, pages 39–50.
Bache, K. and Lichman, M. (2013). UCI machine learning
repository.
Batuwita, R. and Palade, V. (2009). micropred: effective
classification of pre-mirnas for human mirna gene pre-
diction. Bioinformatics, 25(8):989–995.
Batuwita, R. and Palade, V. (2010). FSVM-CIL: Fuzzy
support vector machines for class imbalance learning.
Trans. Fuz Sys., 18(3):558–571.
Bertinet, A. and Agnan, T. C. (2004). Reproducing Kernel
Hilbert Spaces in Probability and Statistics. Kluwer
Academic Publishers.
Burges, C. J. C. (1998). A tutorial on support vector ma-
chines for pattern recognition. Data Min. Knowl. Dis-
cov., 2(2):121–167.
Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27.
Chun-Fu, L. and Sheng-De, W. (2002). Fuzzy support vec-
tor machines. IEEE Transactions on Neural Networks,
13(2):464–471.
Chun-Fu, L. and Sheng-De, W. (2004). Training algorithms
for fuzzy support vector machines with noisy data.
Pattern Recognition Letters, 25(14):1647–1656.
Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-
Taylor, J. (2002). On kernel-target alignment. In Ad-
vances in NIPS 14, pages 367–373.
Duda, R. O. and Hart, P. E. (1973). Pattern Classification
and Scene Analysis. John Wiley & Sons Inc.
Fukumizu, K., Bach, F. R., and Jordan, M. I. (2009). Ker-
nel dimension reduction in regression. The Annals of
Statistics, 37(4):1871–1905.
Fukumizu, K., Song, L., and Gretton, A. (2013). Kernel
Bayes’ rule: Bayesian inference with positive defi-
nite kernels. Journal of Machine Learning Research,
14:3753–3783.
He, H. and Garcia, E. A. (2009). Learning from imbalanced
data. IEEE Transactions on Knowledge and Data En-
gineering, 21(9):1263–1284.
He, H. and Ma, Y. (2013). Imbalanced Learning: Foun-
dations, Algorithms, and Applications. Wiley-IEEE
Press, 1st edition.
Jiang, X., Yi, Z., and Lv, J. (2006). Fuzzy SVM with a
new fuzzy membership function. Neural Computing
& Applications, 15(3-4):268–276.
Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012).
Foundations of Machine Learning. The MIT Press.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Vapnik, V. N. (1995). The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.
Veropoulos, K., Campbell, C., and Cristianini, N. (1999).
Controlling the sensitivity of support vector machines.
In Proc. of IJCAI, pages 55–60.
Yan, D., Liu, X., and Zou, L. (2013). Probability
fuzzy support vector machines. International Jour-
nal of Innovative Computing, Information and Con-
trol, 9(7):3053–3060.
KDIR2014-InternationalConferenceonKnowledgeDiscoveryandInformationRetrieval
334