[Accessed April 2014].
Dataminr [Online]. Available: http://www.dataminr.com/
[Accessed June 2014].
Datasift [Online]. Available: http://datasift.com/
[Accessed June 2014].
Denguetrends [Online]. Available: http://www.google.
org/denguetrends/br/#BR [Accessed April 2014].
Flutrends [Online]. Available: http://www.google.
org/flutrends/br/#BR [Accessed April 2014].
GNIP [Online]. Available: http://gnip.com/ [Accessed
June 2014].
MedlinePlus [Online]. Available: http://www.nlm.nih.gov/
medlineplus/connect [Accessed June 2014].
RXNorm API. [Online] Available from: http://mor.
nlm.nih.gov/download/rxnav/RxNormAPIREST.html.
Topsy [Online]. Available: http://topsy.com/ [Accessed
June 2014].
Twitter. [Online] Available from: http://www.twitter.com.
Twitter REST API. [Online] Available from:
https://dev.twitter.com/docs/api/1.1.
Twitter Rubygem. [Online] Available from:
https://rubygems.org/gems/twitter.
Twitter Streaming API. [Online] Available from:
https://dev.twitter.com/docs/api/streaming.
U.S. National Library of Medicine / National Institutes of
Health [Online]. Available: http://www.nlm.nih.gov/
[Accessed June 2014].
Aronson AR, editor Effective mapping of biomedical text
to the UMLS Metathesaurus: the MetaMap program.
Proceedings of the AMIA Symposium; 2001:
American Medical Informatics Association.
Bate A, Lindquist M, Edwards I, Olsson S, Orre R,
Lansner A, et al. A Bayesian neural network method
for adverse drug reaction signal generation. European
journal of clinical pharmacology. 1998;54(4):315-21.
Bodenreider, O. 2004. The unified medical language
system (UMLS): integrating biomedical terminology.
Nucleic acids research, 32, D267-D270.
DuMouchel W. Bayesian data mining in large frequency
tables, with an application to the FDA spontaneous
reporting system. The American Statistician.
1999;53(3):177-90.
DuMouchel W, Pregibon D, editors. Empirical bayes
screening for multi-item associations. Proceedings of
the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining; 2001:
ACM.
Evans S, Waller PC, Davis S. Use of proportional
reporting ratios (PRRs) for signal generation from
spontaneous adverse drug reaction reports.
Pharmacoepidemiology and drug safety.
2001;10(6):483-6.
Fielding RT. Architectural styles and the design of
network-based software architectures: University of
California, Irvine; 2000.
Fram DM, Almenoff JS, DuMouchel W, editors.
Empirical Bayesian data mining for discovering
patterns in post-marketing drug safety. Proceedings of
the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining; 2003: ACM.
Friedman, C., Alderson, P. O., Austin, J. H., Cimino, J. J.
& Johnson, S. B. 1994. A general natural-language
text processor for clinical radiology. Journal of the
American Medical Informatics Association, 1, 161-
174.
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L.,
Smolinski, M. S. & Brilliant, L. 2009. Detecting
influenza epidemics using search engine query data.
Nature, 457, 1012-1014.
Lampos, V. & Cristianini, N. 2012. Nowcasting events
from the social web with statistical learning. ACM
Transactions on Intelligent Systems and Technology
(TIST), 3, 72.
Masse M. REST API design rulebook: " O'Reilly Media,
Inc."; 2011
Mendes, M., Pinheiro, R., Avelar, K., Teixeira, J. & Silva,
G. 2008. História da farmacovigilância no Brasil. Rev
Bras Farm, 89, 246-251.
Norén GN, Bate A, Orre R, Edwards IR. Extending the
methods used to screen the WHO drug safety database
towards analysis of complex associations and
improved accuracy for rare events. Statistics in
medicine. 2006;25(21):3740-57.
Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio
and its advantages over the proportional reporting
ratio. Pharmacoepidemiology and drug safety.
2004;13(8):519-23.
Signorini, A., Segre, A. M. & Polgreen, P. M. 2011. The
use of Twitter to track levels of disease activity and
public concern in the US during the influenza A H1N1
pandemic. PloS one, 6, e19467.
Venulet J, Ten Ham M. Methods for monitoring and
documenting adverse drug reactions. International
journal of clinical pharmacology and therapeutics.
1996;34(3):112.
Wu Y, Denny JC, Rosenbloom ST, Miller RA, Giuse DA,
Xu H, editors. A comparative study of current clinical
natural language processing systems on handling
abbreviations in discharge summaries. AMIA Annual
Symposium Proceedings; 2012: American Medical
Informatics Association.
Zorych, I., Madigan, D., Ryan, P. & Bate, A. 2013.
Disproportionality methods for pharmacovigilance in
longitudinal observational databases. Statistical
methods in medical research, 22, 39-56.
MiningforAdverseDrugEventsonTwitter
359