Beltr
´
an, C. and Pardo, L. (2011). Fast linear homotopy to
find approximate zeros of polynomial systems. Found.
Comput. Math., 11(1):95–129.
Benedetti, A., Farina, M., and Gobbi, M. (2006). Evolu-
tionary multiobjective industrial design: the case of a
racing car tire-suspension system. IEEE Trans. Evo-
lutionary Computation, 10(3):230–244.
Blum, L., Cucker, F., Shub, M., and Smale, S. (1998). Com-
plexity and Real Computation. Springer-Verlag, New
York.
Borges, C. and Pardo, L. (2008). On the Probability Distri-
bution of Data at Points in Real Complete Intersection
Varieties. Journal of Complexity, 24(4):492–523.
Castro, D., Giusti, M., Heintz, J., Matera, G., and Pardo,
L. M. (2003). The hardness of polynomial equation
solving. Foundations of Computational Mathematics,
3(4):347–420.
Castro, D., Pardo, L., H
¨
agele, K., and Morais, J. (2001).
Kronecker’s and newton’s approaches to solving: A
first comparison. J. Complexity, 17(1):212–303.
Cox, D., Little, J., and O’Shea, D. (1997). Ideals, Varieties,
and Algorithms. Undergraduate Texts in Mathemat-
ics. Springer-Verlag, New York.
Dedieu, J., Priouret, P., and Malajovich, G. (2003). New-
ton’s method on riemannian manifolds: covariant al-
pha theory. IMA Journal of Numerical Analysis,
23(3):395–419.
Dedieu, J.-P. and Kim, M.-H. (2002). Newton’s method
for analytic systems of equations with constant rank
derivatives. Journal of Complexity, 18(1):187 – 209.
Dieudonn
´
e, J. (1985). History of Algebraic Geometry: An
Outline of the History and Development of Algebraic
Geometry. Chapman & Hall.
Durvye, C. and Lecerf, G. (2008). A concise proof of
the Kronecker polynomial system solver from scratch.
Expositiones Mathematicae, 26(2):101–139.
Giusti, M., Heintz, J., Morais, J., Morgenstern, J., and
Pardo, L. (1998). Straight-line programs in geomet-
ric elimination theory. Journal of Pure and Applied
Algebra, 124(1–3):101–146.
Giusti, M., Pardo, L., and Weispfenning, V. (2003). Al-
gorithms of Commutative Algebra and Algebraic Ge-
ometry: Algorithms for Polynomial Ideals and Their
Varieties, Handbook of Computer Algebra. Springer
Verlag.
Gradshte
˘
ın, I., Ryzhik, I., Jeffrey, A., and Zwillinger, D.
(2007). Table of integrals, series and products. Aca-
demic Press. Academic.
Grapsa, T. N. and Vrahatis, M. N. (2003). Dimension reduc-
ing methods for systems of nonlinear equations and
unconstrained optimization: A review. A Review, Re-
cent Adv. Mech. Related Fields, pages 215–225.
Hentenryck, P. V., Mcallester, D., and Kapur, D. (1997).
Solving polynomial systems using a branch and prune
approach. SIAM Journal on Numerical Analysis,
34:797–827.
K. Deb, K. Mitra, R. D. and Majumdar, S. (2004). Towards
a better understanding of the epoxy-polymerization
process using multi-objective evolutionary computa-
tion. Chem. Eng. Sci., 59(20):4261–4277.
Koza, J. (1992). Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection.
The MIT Press.
Kuri-Morales, A. (2003). Solution of simultaneous non-
linear equations using genetic algorithms. In WSEAS
Transactions on SYSTEMS, Issue 1, vol. 2, pages 44–
51.
Laarhoven, P. and Aarts, E., editors (1987). Simulated an-
nealing: theory and applications. Kluwer Academic
Publishers, Norwell, MA, USA.
Mastorakis, N. E. (2005). Solving non linear equations via
genetic algorithms. In Proceedings of the 6th WSEAS
Int. Conf. on EVOLUTIONARY COMPUTING, pages
24–28.
Michalewicz, Z., Logan, T., and Swaminathan, S. (1994).
Evolutionary operators for continuous convex param-
eter spaces. In Proceedings of the 3
rd
Annual Con-
ference on Evolutionary Programming, pages 84–97.
World Scientic.
Michalewicz, Z. and Schoenauer, M. (1996). Evolution-
ary algorithms for constrained parameter optimization
problems. Evolutionary Computation, 4:1–32.
Poli, R. (2008). Analysis of the publications on the appli-
cations of particle swarm optimisation. J. Artif. Evol.
App., 2008:1–10.
Price, K., Storn, R., and Lampinen, J. (2005). Differential
Evolution: A Practical Approach to Global Optimiza-
tion. Springer, 1 edition.
Tan, K. C., Yang, Y. J., and Goh, C. K. (2006). A distributed
cooperative coevolutionary algorithm for multiobjec-
tive optimization. IEEE Trans. Evolutionary Compu-
tation, 10(5):527–549.
ASharpFitnessFunctionfortheProblemofFindingRootsofPolynomialEquationsSystems
301