on the expert’s opinion, this methodology also allows
us to evaluate the strength and descriptive capacity
of the model. The performed simulation was capa-
ble to identify the feedback processes, and when lin-
guistic variables were used and aggregated to produce
an overall linguistic weight for each edge with the as-
sociated defuzzification by using Center of Gravity,
the resulting model matched with the current descrip-
tion of the climate system referred by Rockstr
¨
om et al
(2009). Although the algorithm for the adjustment of
the weights was restricted, the adjustments where the
principal reduction occurs in the relation Industrial-
ization - CO
2
atmospheric concentration, were plau-
sible in the context of the current reports on climate
change. This, together with the results of the simula-
tions, support the idea that the developed model can
be used for the planning, implementation, and eval-
uation of policies. A possible further work, in order
to analyze the adjustments performed, could imple-
ment migration or evolutionary algorithms to adjust
the weights (Va
ˇ
s
ˇ
c
´
ak 2012) and evaluate the perform
of each type from the point of view of the stakehold-
ers.
ACKNOWLEDGEMENTS
The present work was developed with the support of
the Programa de Investigaci
´
on en Cambio Clim
´
atico
(PINCC) of the Universidad Nacional Aut
´
onoma de
M
´
exico (UNAM).
REFERENCES
Cakmak, E., Dudu, H., Eruygur, O., Ger, M. Onurlu,
S. and Tonguc,
¨
O (2010). Visions for the Future
of Water in Seyhan Basin, Turkey: A Backcast-
ing Application International Environmental Mod-
elling and Software Society (iEMSs) International
Congress on Environmental Modelling and Software
Modelling for Environments Sake, Fifth Biennial
Meeting, Ottawa, Canada David A. Swayne, Wanhong
Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)
http://www.iemss.org/iemss2010/index.php?n=
Main.Proceedings
Eden, C. (1992). On the nature of cognitive maps. Journal
of Management Studies vol. 29, pp. 261265.
Eden, C., Ackermann F, & Cropper S (1992). On the na-
ture of cognitive maps. The analysis of cause maps.
Journal of Management Studies vol. 29, pp. 309-324.
Foley, JA. (2010). Boundaries for a Healthy Planet. Scien-
tific American, 5457.
IPCC Intergovernamental Panel on Climate Change (2007).
Cambio climtico 2007: Informe de sntesis. Con-
tribucin de los Grupos de trabajo I, II y III al Cuarto
Informe de evaluacin del Grupo Intergubernamental
de Expertos sobre el Cambio Climtico. IPCC, Suiza.
IPCC Intergovernamental Panel on Climate Change (2014).
Summary for policy makers. In: Climate Change
2014: Impacts, Adaptation, and Vulnerability. PartA:
Global and Sectoral Aspects. Contribution of Working
Group II to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change [Field,C.B.,
V.R.Barros, D.J.Dokken, K.J.Mach, M.D. Mastran-
drea, T.E.Bilir, M.Chatterjee, K.L.Ebi, Y.O.Estrada,
R.C.Genova, B.Girma, E.S.Kissel, A.N.Levy,S. Mac-
Cracken, P.R.Mastrandrea, and L.L.White(eds.)].
CambridgeUniversityPress, Cambridge,United King-
dom and NewYork, NY, USA, pp.1-32.
Kosko, B. (1986). Fuzzy Cognitive Maps. Man-Machine
Studies, 24, 65-75.
Kosko, B. (1991). Neural Networks and Fuzzy Systems: a
dynamical systems approach to machine intelligence.
Prentice Hall.
Mace, G., Masundire, H., Baillie, J., Ricketts, T., Brooks,
T., (2005). Chapter 4: Biodiversity in “Ecosystems
and human well-being: Current state and trends”, Is-
land Press USA.
Ozesmi, U. & S. L. Ozesmi, (2004). Ecological Models
based on Peoples Knowledge: A Multi-Step Fuzzy
Cognitive Mapping Approach. Ecological Modeling
vol. 176,pp. 4364.
Papageorgiou, E. & Kontogianni, A. (2012). Using Fuzzy
Cognitive Mapping in Environmental Decision Mak-
ing and Management: A Methodological Primer and
an Application, International Perspectives on Global
Environmental Change, Dr. Stephen Young (Ed.),
ISBN: 978-953-307-815-1, InTech, Available from:
http://www.intechopen.com/books/international-
perspectives-on-global-environmental-change/using-
fuzzy- cognitive-mapping-in-environmental-decision-
making-and-management-a-methodological-prime
Papageorgiou, E. & Stylios, C.D. (2008). Fuzzy Cogni-
tive Maps, in book: Handbook of Granular Comput-
ing, editors: Witold Pedrycz, Andrzej Skowron and
Vladik Kreinovich, Chapter 34, John Wiley & Sons,
Ltd, pp. 755-775.
Papageorgiou, E.I, Stylios, C.D, Groumpos, P.P. (2003).
Fuzzy cognitive map learning based on nonlinear
Hebbian rule, In: T.D. Gedeon and L.C.C. Fung
(Eds.): AI 2003, LNAI vol. 2903, Springer-Verlag,
2003, pp. 254- 266.
Papageorgiou, E.I, Stylios, C.D, Groumpos, P.P. (2006).
Unsupervised learning techniques for fine-tuning
fuzzy cognitive map casual links, International Jour-
nal of Human-Computer Studies, vol. 64, no. 8, 2006,
pp. 727-743.
Papakostas, G.A., Polydoros, A.S., Koulourio-
tis, D.E. and Tourassis, V.D. (2011). Train-
ing Fuzzy Cognitive Maps by Using Hebbian
Learning Algorithms: A Comparative Study.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
reload=true&arnumber=6007544.
Paz-Ortiz, A. (2011). Master degree Thesis. “Uso de mapas
cognitivos para el estudio de la estabilidad en sistemas
UsingFuzzyCognitiveMappingandNonlinearHebbianLearningforModeling,SimulationandAssessmentoftheClimate
System,BasedonaPlanetaryBoundariesFramework
861