Sentiment Polarity Extension for Context-Sensitive Recommender Systems
Octavian Lucian Hasna, Florin Cristian Macicasan, Mihaela Dinsoreanu, Rodica Potolea
2014
Abstract
Opinion mining has become an important field of text mining. The limitations in case of supervised learning refer to domain dependence: a solution is highly dependent (if not specifically designed or at least specifically tuned) on a given data set (or at least specific domain). Our method is an attempt to overcome such limitations by considering the generic characteristics hidden in textual information. We aim to identify the sentiment polarity of documents that are part of different domains with the help of a uniform, cross-domain representation. It relies on three classes of original meta-features that can be used to characterize datasets belonging to various domains. We evaluate our approach using three datasets extensively used in the literature. The results for in-domain and cross-domain verification show that the proposed approach handles novel domains increasingly better as its training corpus grows, thus inducing domain-independence.
References
- Baccianella, S., Esuli, A. & Sebastiani, F., 2010. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. Proceedings of LREC.
- Blei, D. M., Ng, A. Y. & Jordan, M. I., 2003. Latent dirichlet allocation. The Journal of Machine Learning Research, Volume 3, pp. 993-1022.
- Blitzer, J., Dredze, M. & Pereira, F., 2007. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. Proceedings of the 45th Annual Meeting of ACL.
- Dinsoreanu, M., Macicasan, F. C., Hasna, O. L. & Potolea, R., 2012. A Unified Approach for Context-sensitive Recommendations. Proceedings of the KDIR International Conference.
- Hu, M. & Liu, B., 2004. Mining and Summarizing Customer Reviews.. Proceedings of the ACM SIGKDD International Conference.
- Lin, C., He, Y., Everson, R. & RĂ¼ger, S., 2012. Weaklysupervised joint sentimenttopic. IEEE Transactions on Knowledge and Data Engineering, 24(6), pp. 1134- 1145.
- Liu, B., 2012. Sentiment Analysis and Opinion Mining. s.l.:Morgan & Claypool .
- Liu, S., Agam, G. & Grossman, D. A., 2012. Generalized Sentiment-Bearing Expression Features for Sentiment Analysis. Proceedings of COLING (Posters).
- Marcus, M., Santorini, B., Marcinkiewicz, M. A. & Taylor, A., 1999. Treebank-3, Philadelphia: Linguistic Data Consortium.
- Marneffe, M.-C., MacCartney, B. & Manning, C. D., 2006. Generating Typed Dependency Parses from Phrase Structure Parses. Proceedings of LREC.
- Ohana, B., Tierney, B. & Delany, S.-J., 2011. Domain Independent Sentiment Classification with Many Lexicons. Proceedings of the 2011 IEEE Workshops of AINA.
- Pang, B. & Lee, L., 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. Proceedings of the 42nd Annual Meeting of ACL.
- Raaijmakers, S. & Kraaij, W., 2010. Classifier Calibration for Multi-Domain Sentiment Classification. Proceedings of the 4th ICWSM.
- Socher, R. et al., 2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. Proceedings of EMNLP.
- The Economist, 2009. Fair comment. [Online] Available at: http://www.economist.com/node/ 13174365 [Accessed 22 June 2014].
- Toutanova, K., Klein, D., Manning, C. & Singer, Y., 2003. Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. Proceedings of the 2003 Conference of the North American Chapter of ACL on Human Language Technology, Volume 1.
- Turney, P., 2002. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. Proceedings of the 40th Annual Meeting of ACL.
- Witten, I. H., Frank, E. & Hall, M. A., 2011. Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed. San Francisco(CA): Morgan Kaufmann Publishers Inc..
- Xia, R., Zong, C. & Li, S., 2011. Ensemble of feature sets and classification algorithms for sentiment classification. Information Sciences, 181(6), pp. 1138- 1152.
Paper Citation
in Harvard Style
Hasna O., Macicasan F., Dinsoreanu M. and Potolea R. (2014). Sentiment Polarity Extension for Context-Sensitive Recommender Systems . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014) ISBN 978-989-758-048-2, pages 126-137. DOI: 10.5220/0005141101260137
in Bibtex Style
@conference{kdir14,
author={Octavian Lucian Hasna and Florin Cristian Macicasan and Mihaela Dinsoreanu and Rodica Potolea},
title={Sentiment Polarity Extension for Context-Sensitive Recommender Systems
},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)},
year={2014},
pages={126-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005141101260137},
isbn={978-989-758-048-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)
TI - Sentiment Polarity Extension for Context-Sensitive Recommender Systems
SN - 978-989-758-048-2
AU - Hasna O.
AU - Macicasan F.
AU - Dinsoreanu M.
AU - Potolea R.
PY - 2014
SP - 126
EP - 137
DO - 10.5220/0005141101260137