Table 3: Rankings of the experts.
Mapping Hamming
(sea, seas) 1 0.374 0.199
(forest, rain forests) 0.66 0.340 0.199
(Building, Mansions) 0.25 0.121 0.092
(forest, vidaucts) 0.08 0 0
Mapping Maedche
(sea, seas) 0.43 0 0
(forest, rain forests) 0.67 0.158 0.467
(Building, Mansions) 0.52 0 0.167
(forest, vidaucts) 0.55 0 0.167
Mapping Wu & Palmer
(sea, seas) 1 0.467 0.333
(forest, rain forests) 0.53 0.292 0.303
(Building, Mansions) 0.88 0.383 0.333
(forest, vidaucts) 0.25 0 0
Mapping Scoring (eq) Scoring (sub)
(sea, seas) 0.84 0.53
(forest, rain forests) 0.79 0.97
(Building, Mansions) 0.51 0.58
(forest, vidaucts) 0 0.16
U(a) = 0.374∗ u
1
(Sim
Hamming
)
+ 0.158∗ u
2
(Sim
Maedche
)
+ +0.46∗ u
3
(Sim
WUP
)
whereas its score in the subsumption context is
given by the following formula:
U(a) = 0.199∗ u
′
1
(Sim
Hamming
)
+ 0.467∗ u
′
2(Sim
Maedche
)
+ 0.333∗ u
′
3(Sim
WUP
)
These formula can be nowused to rank all the can-
didate mappings coming from SatellitesSceneOntol-
ogy and FTT ontologies.
5 CONCLUSION
In this paper, after presenting a literature review of
the main similarity models used to map or align on-
tology entities, we propose a semi-automatic mapping
selection process in order to build a satellite images
ontology by reusing geographical object ontologies.
The main advantage of our work is that it needs lit-
tle human intervention to monitor the mapping pro-
cess. First experimentations show that our approach
is promising.
REFERENCES
Charlet, j., Szulman, S., Aussenac-Gilles, N., Nazarenko,
Hernandez, N., Nadah, N., Sardet, E., Delahousse, J.,
Valry Tguiak, H., and Baneyx, A. (2010). Dafoe: une
plateforme pour construire des ontologies partir de
textes et de thesaurus. In 10ime Confrence Interna-
tionale Francophone sur l’Extractionet la Gestion des
Connaissances. EGC.
Couto, F. M.and Silva, M. J. and Coutinho, P. M. (2005).
Semantic similarity over the gene ontology: family
correlation and selecting disjunctive ancestors. In
ACM, editor, the 14th ACM International Conference
on Information and Knowledge Management, pages
343–344.
Durand, N., Derivaux, S., Forestier, G., Wemmert, C.,
Gancarski, P., Boussaid, O., and Puissant, A. (2007).
Ontology–based object recognition for remote sensing
image interpretation. In IEEE International Confer-
ence on Tools with Artificial Intelligence, pages 472–
479, Greece.
Egenhofer, M. (2002). Toward the semantic geospa-
tial web. In 10th ACM International Symposium
on Advances in Geographic Information Systems,
10.1145/585147.585148, pages 1–4. ACM.
Gardenfors, P. (2000). Conceptual Spaces: The Geome-
try of Thought. Massachusetts Institute of technology,
Cambridge, 2004 edition.
Gentner, D. (1989). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7:155–
170.
Gesbert, N. (2005). Etude de la formalisation des spcifica-
tions de bases de donnes gographiques en vue de leur
intgration. PhD thesis, Universit de Marne la Valle et
IGN.
Goldstone, R. L. (1994). Similarity, interactive activation,
and mapping. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20:3–28.
Goldstone, R. L. (1999). Similarity. In The MIT encyclope-
dia of the cognitive sciences, pages 763–765.
Goldstone, R. L. (2005). Similarity. In Cambridge hand-
book of thinking and reasonning, pages 13–36.
Hahn, U., Close, J., and Graf, M. (2009). Transformation
direction influences shape similarity judgements. Psy-
chological science, pages 447–454.
Hamming, R. W. (1950). Error detecting and error correct-
ing codes. Bell System Technical Journal, pages 147–
160.
Holyoak, K. J. and Thagard, P. (1989). Analogical mapping
by constraint satisfaction. Cognitive Science, 13:295–
355.
Hudelot, C., Atif, J., and Bloch, I. (2006). Ontologie de re-
lations spatiales floues pour l’interprtation d’images.
In Rencontres francophones sur la Logique Floue et
ses Applications, Toulouse, France. LFA 2006.
Imai, S. (1977). Pattern similarity and cognitive transfor-
mations. Acta Psychologica, 41(6):433–447.
Jacquet-Lagr`eze, E., Meziani, R., and Slowinski, R. (1987).
Molp with an interactive assessment of a piecewise
utility function. Eur. J. Oper. Res, 31(3):350–357.
Jacquet-Lagr`eze, E. and Siskos, Y. (1982). Assessing a set
of additive utility functions for multicriteria decision
making: the UTA method. European Journal of Op-
erational Research, 10:151–164.
ASemi-automaticMappingSelectionintheOntologyAlignmentProcess
465