ACKNOWLEDGEMENTS
Author thanks organizations and scientists who are
developing the IRI model, providing data of SPIDR,
JPL, CODE, UPC, ESA, and Dr M. Hoque for
detailed comments on the NGM model.
REFERENCES
Arikan, F., Erol C.B., Arikan O., Regularized estimation
of vertical total electron content from Global
Positioning System data. 2003. J. Geophys. Res., 108,
A12, 1469, doi:10.1029/2002JA009605, 12p.
Chen, K., Gao Y. Real-time precise point positioning
using single frequency data. Proceedings of IONGNSS
18
th
International Technical Meeting of the Satellite
Division, Long Beach, CA, 2005, 1514-1523.
Goodman, J.M., 2005. Operational communication
systems and relationships to the ionosphere and space
weather. Adv. Space Res., 36, 2241–2252.
Gulyaeva, T.L., 2011. Storm time behavior of topside
scale height inferred from the ionosphere-
plasmosphere model driven by the F2 layer peak and
GPS-TEC observations. Adv. Space Res., 47, 913-920.
Gulyaeva, T.L., Arikan F., Hernandez-Pajares M.,
Stanislawska I. 2013. GIM-TEC adaptive ionospheric
weather assessment and forecast system. J. Atm.
Solar-Terr. Phys., 102, 329-340.
Gulyaeva, T.L., Bilitza D., 2011. Towards ISO standard
Earth ionosphere and plasmasphere model. In: Larsen,
R.J. (Ed.), New developments in the standard model.
NOVA Publishers, USA, 11–64.
Gulyaeva, T.L., Stanislawska, I., 2008. Derivation of a
planetary ionospheric storm index. Ann. Geophys., 26,
2645–2648.
Hajj, G.A., Romans L.J., 1998. Ionospheric electron
density profiles obtained with the Global Positioning
System: results from the GPS/MET experiment. Radio
Sci., 33, 175–190.
Hernandez-Pajares, M., Juan, J. M., Orus, R., Garcia-Rigo,
A., Feltens, J., Komjathy, A., Schaer, S. C., and
Krankowski, A.: The IGS VTEC maps: a reliable
source of ionospheric information since 1998. J.
Geod., 2009, 83, 263–275.
Hernandez-Pajares, M., Juan, J.M., Sanz, J., 1997. High-
resolution TEC monitoring method using permanent
ground GPS receivers, Geophys. Res. Lett., 24, 1643-
1646.
Hoque, M.M., Jakowski N., 2011. A new global empirical
NmF2 model for operational use in radio systems.
Radio Sci., 46, RS6015, 1-13.
Hoque, M.M., Jakowski N., 2012. A new global model for
the ionospheric F2 peak height for radio wave
propagation. Ann. Geophys., 30, 797-809.
Houminer, Z., Soicher H., 1996. Improved short –term
predictions of foF2 using GPS time delay
measurements. Radio Sci., 31(5), 1099-1108.
Ivanov, V.B., Gefan G.D., Gorbachev O.A., 2011. Global
empirical modeling of the total electron content of the
ionosphere for satellite radio navigation systems. J.
Atm. Solar-Terr. Phys., 73, 1703–1708.
Jakowski, N., Hoque M.M., Mayer C. A new global TEC
model for estimating transionospheric radio wave
propagation errors, Journal of Geodesy, 2011, 85(12),
965-974.
Jakowski, N., Sardon E., Engler E., Jungstand A., Klahn
D., 1996. Relationships between GPS-signal
propagation errors and EISCAT observations. Ann.
Geophys., 14, 1429-1436.
Jakowski, N., Stankov S.M., Schlueter S., Klaehn D.,
2006. On developing a new ionospheric perturbation
index for space weather operations. Adv. Space Res.,
38, 2596-2600.
Kakinami, Y., Chen C.H., Liu J.Y., Oyama K.-I., Yang
W.H., Abe S., 2009. Empirical models of total
electron content based on functional fitting over
Taiwan during geomagnetic quiet condition. Ann.
Geophys., 27, 3321-3333.
Klobuchar, J.A., 1987. Ionospheric time-delay algorithm
for single-frequency GPS users. IEEE Transactions on
aerospace and electronic systems. 1987AES-23(3),
325-331.
Lastovicka, J. Are trends in total electron content (TEC)
really positive? J. Geophys. Res.: Space Physics,
2013, 118, 3831–3835, doi:10.1002/jgra.50261.
Lean, J., Emmert J.T., Picone J.M., Meier R. R. Global
and regional trends in ionospheric electron content. J.
Geophys. Res., 2011, 116, A00H04, doi:10.1029
/2010JA016378.
Maltseva, О.A., Mozhaeva N.S, Zhbankov G.A., 2012a. A
new model of the International Reference Ionosphere
IRI for telecommunication and navigation systems.
Proceedings of the First International Conference on
Telecommunications and Remote Sensing, Sofia,
Bulgaria 29-30 August 2012, 129-138,
http://www.math.bas.bg/ursi/ICTRS2012
proceedings.pdf
Maltseva, О.A., Mozhaeva N.S, Poltavsky O.S., Zhbankov
G.A., 2012b. Use of TEC global maps and the IRI
model to study ionospheric response to geomagnetic
disturbances. Adv. Space Res., 49, 1076-1087.
Maltseva, O. A., Zhbankov G. A., Mozhaeva N.S., 2013a.
Advantages of the new model of IRI (IRI-Plas) to
study ionospheric environment. Adv. Radio Sci., 11,
907–911, doi:10.5194/ars-11-1-2013.
Maltseva, О.A., Mozhaeva N.S, T.V. Nikitenko, 2013b.
Validation of the Neustrelitz Global Model according
to the low latitude ionosphere. Adv. Space Res.,
http://dx.doi.org/10.1016/j.asr.2013.11.005.
Maltseva, O., Mozhaeva N., Vinnik E., 2013c. Validation
of two new empirical ionospheric models IRI-Plas and
NGM describing conditions of radio wave propagation
in space. Proceedings of Second International
Conference on Telecommunications and Remote
Sensing, Noordwijkerhout, The Netherlands, 11-12
July, 109-118.
Mukhtarov, P., Pancheva D., Andonov B., Pashova L.,
2013a. Global TEC maps based on GNSS data: 1.
Third International Conference on Telecommunications and Remote Sensing