than other methods which use the skeleton of the seg-
mented image. The measurements based on the skele-
ton depends highly on this process. The change of a
single pixel of the skeleton can modify the line which
fits the branch and therefore it involves variations in
the angle measurement.
As future work, we will evaluate the performance
of the proposed method on all retinal images from
DRIVE (Staal et al., 2004) and STARE (Hoover et al.,
2000) databases. Comparisons with other state-of-art
methods will also be done.
ACKNOWLEDGEMENTS
This work was supported by Ministerio de Econom
´
ıa
y Competitividad of Spain, Project ACRIMA
(TIN2013-46751-R).
REFERENCES
Abramoff, M., Garvin, M., and Sonka, M. (2010). Retinal
imaging and image analysis. Biomedical Engineering,
IEEE Reviews in, 3:169–208.
Angulo, J., Verd
´
u-Monedero, R., and Morales-S
´
anchez, J.
(2011). Multiscale local multiple orientation estima-
tion using Mathematical Morphology and B-spline in-
terpolation. Proc. of 7th Int. Symposium on Image and
Signal Processing and Analysis (ISPA), pages 575 –
578.
Ardizzone, E., Pirrone, R., Gambino, O., and Radosta, S.
(2008). Blood vessels and feature points detection on
retinal images. Engineering in Medicine and Biology
Society, 2008. EMBS 2008. 30th Annual International
Conference of the IEEE, pages 2246–2249.
Azzopardi, G. and Petkov, N. (2011). Detection of reti-
nal vascular bifurcations by trainable v4-like filters.
CAIP’11 Proc. 14th Int. Conf. on Computer Analysis
of Images and Patterns, 1:451–459.
Azzopardi, G. and Petkov, N. (2013). Automatic detection
of vascular bifurcations in segmented retinal images
using trainable cosfire filters. In Pattern Recognition
Letters, volume 34, pages 922–933.
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and
Goldbaum, M. (1989). Detection of blood vessels in
retinal images using two-dimensional matched filters.
IEEE Trans. on Medical Imaging, 8:263–269.
Gao, X. W., Bharath, A., Stanton, A., Hughes, A., Chap-
man, N., and Thom, S. (2000). Quantification
and characterisation of arteries in retinal images.
Computer Methods and Programs in Biomedicine,
63(2):133 – 146.
Hoover, A., Kouznetsova, V., and Goldbaum, M. (2000).
Locating blood vessels in retinal images by piecewise
threshold probing of a matched filter response. IEEE
Transactions on Medical Imaging, 19(3):203–210.
Legaz-Aparicio, A. G., Verd
´
u-Monedero, R., Morales-
S
´
anchez, J., Larrey-Ruiz, J., and Angulo, J. (2014).
Detection of retinal vessel bifurcations by means of
multiple orientation estimation based on regularized
morphological openings. In XIII Mediterranean Con-
ference on Medical and Biological Engineering and
Computing 2013, volume 41 of IFMBE Proceedings,
pages 317–320. Springer International Publishing.
MacGillivray, T., Perez-Rovira, A., Trucco, E., Chin, K.,
Giachetti, A., Lupascu, C., Tegolo, D., Wilson, P.,
Doney, R., Laude, A., and Dhillon, B. (2012). VAM-
PIRE: Vessel Assessment and Measurement Platform
for Images of the Retina. CRC Press.
Martinez Perez, M., Highes, A., Stanton, A., Thorn, S.,
Chapman, N., Bharath, A., and Parker, K. (2002).
Retinal vascular tree morphology: a semi-automatic
quantification. IEEE Trans. on Biomedical Engineer-
ing, 49(8):912–917.
Mart
´
ınez-P
´
erez, M. E., Hughes, A., Stanton, A., Thom, S.,
Bharath, A., and Parker, K. (1999). Scale-space anal-
ysis for the characterisation of retinal blood vessels.
Medical Image Computing and Computer-Assisted In-
tervention, pages 90–97.
Morales, S., Naranjo, V., L
´
opez-Mir, F., Navea, A., and niz,
M. A. (2014). Computer-assisted system for hyper-
tensive risk determination through fundus image pro-
cessing. In Romero, L. M. R., editor, XIII Mediter-
ranean Conference on Medical and Biological Engi-
neering and Computing 2013, volume 41 of IFMBE
Proceedings, pages 273–276. Springer.
Soille, P. and Talbot, H. (2001). Directional morphological
filtering. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 23(11):1313–1329.
Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., and
van Ginneken, B. (2004). Ridge-based vessel segmen-
tation in color images of the retina. Medical Imaging,
IEEE Transactions on, 23(4):501–509.
Verd
´
u-Monedero, R., Angulo, J., and Serra, J. (2011).
Anisotropic morphological filters with spatially-
variant structuring elements based on image-
dependent gradient fields. IEEE Trans. Image
Processing, 20(1):200–212.
Zana, F. and Klein, J.-C. (2001). Segmentation of vessel-
like patterns using mathematical morphology and cur-
vature evaluation. IEEE Trans. on Image Processing,
10(7):1010–1019.
DeterminationofBifurcationAnglesoftheRetinalVascularTreethroughMultipleOrientationEstimationbasedon
RegularizedMorphologicalOpenings
131