Dynamic Task Allocation for Human-robot Teams
Tinka R. A. Giele, Tina Mioch, Mark A. Neerincx, John-Jules C. Meyer
2015
Abstract
Artificial agents, such as robots, are increasingly deployed for teamwork in dynamic, high-demand environments. This paper presents a framework, which applies context information to establish task (re)allocations that improve human-robot team’s performance. Based on the framework, a model for adaptive automation was designed that takes the cognitive task load (CTL) of a human team member and the coordination costs of switching to a new task allocation into account. Based on these two context factors, it tries to optimize the level of autonomy of a robot for each task. The model was instantiated for a single human agent cooperating with a single robot in the urban search and rescue domain. A first experiment provided encouraging results: the cognitive task load of participants mostly reacted to the model as intended. Recommendations for improving the model are provided, such as adding more context information.
References
- Bailey, N. R., Scerbo, M. W., Freeman, F. G., Mikulka, P. J., and Scott, L. A. (2006). Comparison of a brainbased adaptive system and a manual adaptable system for invoking automation. Human Factors: The Journal of the Human Factors and Ergonomics Society, 48(4):693-709.
- Barnes, C. M., Hollenbeck, J. R., Wagner, D. T., DeRue, D. S., Nahrgang, J. D., and Schwind, K. M. (2008). Harmful help: The costs of backing-up behavior in teams. Journal of Applied Psychology, 93(3):529.
- Brannick, M. T., Salas, E., and Prince, C. (1997). Team Performance Assessment and Measurement: Theory, Methods, and Applications. Series in Applied Psychology. Lawrence Erlbaum Associates.
- Burke, J. L., Murphy, R. R., Rogers, E., Lumelsky, V. J., and Scholtz, J. (2004). Final report for the DARPA/NSF interdisciplinary study on human-robot interaction. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 34(2):103-112.
- Calhoun, G. L., Ruff, H. A., Spriggs, S., and Murray, C. (2012). Tailored performance-based adaptive levels of automation. Proceedings of the Human Factors and Ergonomics Society, 56(1):413-417.
- Colin, T., Mioch, T., Smets, N., and Neerincx, M. (2014). Real time modeling of the cognitive load of an urban search and rescue robot operator. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2014).
- Fitts, P. M., Viteles, M. S., Barr, N. L., Brimhall, D. R., Finch, G., Gardner, E., Grether, W. F., Kellum, W. E., and Stevens, S. S. (1951). Human engineering for an effective air-navigation and traffic-control system. Technical report, Ohio State University Research Foundation Columbus.
- Gerkey, B. P. and Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9):939-954.
- Greef, T. E. d., Arciszewski, H. F. R., and Neerincx, M. A. (2010). Adaptive automation based on an objectoriented task model: Implementation and evaluation in a realistic C2 environment. Journal of Cognitive Engineering and Decision Making, 4(2):152-182.
- Guzzo, R. A., Salas, E., and Goldstein, I. L. (1995). Team Effectiveness and Decision Making in Organizations. Jossey-Bass San Francisco.
- Hilburn, B., Molloy, R., Wong, D., and Parasuraman, R. (1993). Operator versus computer control of adaptive automation. In The Adaptive Function Allocation for Intelligent Cockpits (AFAIC) Program: Interim Research Guidelines for the Application of Adaptive Automation, pages 31-36. DTIC Document.
- Ilgen, D. R., Hollenbeck, J. R., Johnson, M., and Jundt, D. (2005). Teams in organizations: From input-processoutput models to IMOI models. Annual Review of Psychology, 56:517-543.
- Inagaki, T. (2003). Adaptive automation: Sharing and trading of control. In Handbook of Cognitive Task Design, pages 147-169. Mahwah, NJ: Lawrence Erlbaum Associates.
- Kidwell, B., Calhoun, G. L., Ruff, H. A., and Parasuraman, R. (2012). Adaptable and adaptive automation for supervisory control of multiple autonomous vehicles. In Proceedings of the Human Factors and Ergonomics Society, pages 428-432.
- Matthew, G., Davies, D. R., Westerman, S. J., and Stammers, R. B. (2000). Human Performance: Cognition, Stress, and Individual Differences. Psychology Press.
- McGrath, J. E. (1964). Social Psychology: A Brief Introduction. Holt, Rinehart and Winston.
- Moray, N., Inagaki, T., and Itoh, M. (2000). Adaptive automation, trust, and self-confidence in fault management of time-critical tasks. Journal of Experimental Psychology: Applied, 6(1):44.
- Neerincx, M. A. (2003). Cognitive task load design: Model, methods and examples. In Handbook of Cognitive Task Design, pages 283-305. Mahwah, NJ: Lawrence Erlbaum Associates.
- Neerincx, M. A., Kennedie, S., Grootjen, M., and Grootjen, F. (2009). Modeling the cognitive task load and performance of naval operators. In Schmorrow, D., Estabrooke, I., and Grootjen, M., editors, Foundations of Augmented Cognition, volume 5638 of LNCS, pages 260-269. Springer Berlin / Heidelberg.
- Parasuraman, R., Cosenzo, K. A., and Visser, E. d. (2009). Adaptive automation for human supervision of multiple uninhabited vehicles: Effects on change detection, situation awareness, and mental workload. Military Psychology, 21(2):270-297.
- Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., and Goodrich, M. (2006). Common metrics for human-robot interaction. In Proceedings of the 1st Conference on Human-Robot Interaction, pages 33-40. ACM.
Paper Citation
in Harvard Style
R. A. Giele T., Mioch T., A. Neerincx M. and C. Meyer J. (2015). Dynamic Task Allocation for Human-robot Teams . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-073-4, pages 117-124. DOI: 10.5220/0005178001170124
in Bibtex Style
@conference{icaart15,
author={Tinka R. A. Giele and Tina Mioch and Mark A. Neerincx and John-Jules C. Meyer},
title={Dynamic Task Allocation for Human-robot Teams},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2015},
pages={117-124},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005178001170124},
isbn={978-989-758-073-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Dynamic Task Allocation for Human-robot Teams
SN - 978-989-758-073-4
AU - R. A. Giele T.
AU - Mioch T.
AU - A. Neerincx M.
AU - C. Meyer J.
PY - 2015
SP - 117
EP - 124
DO - 10.5220/0005178001170124