combination of combinations.
REFERENCES
Ait-Mohand, K., Paquet, T., and Ragot, N. (2014). Combin-
ing structure and parameter adaptation of HMMs for
printed text recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, (99).
Bengio, Y. (2009). Learning Deep Architectures for AI.
Foundations and Trends in Machine Learning, 2(1):1–
127.
Bengio, Y., De Mori, R., Flammia, G., and Kompe, R.
(1992). Global optimization of a neural network-
hidden Markov model hybrid. IEEE Transactions on
Neural Networks, 3(2):252–259.
Bishop, C. M. (1995). Neural networks for pattern recog-
nition. Oxford University Press.
Bunke, H., Bengio, S., and Vinciarelli, A. (2004). Offline
recognition of unconstrained handwritten texts using
HMMs and statistical language models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
26(6):709–720.
Dalal, N. and Triggs, B. (2005). Histograms of Oriented
Gradients for Human Detection. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 1:886–893.
El-Yacoubi, A., Bertille, J., and Gilloux, M. (1995). Con-
joined location and recognition of street names within
a postal address delivery line. Proceedings of the
Third International Conference on Document Analy-
sis and Recognition, 2:1024–1027.
El-Yacoubi, A., Gilloux, M., Sabourin, R., and Suen, C. Y.
(1999). An HMM-based approach for off-line uncon-
strained handwritten word modeling and recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(8):752–760.
Gehler, P. and Nowozin, S. (2009). On feature combina-
tion for multiclass object classification. In IEEE Inter-
national Conference on Computer Vision, pages 221–
228. IEEE.
Gers, F. A. and Schraudolph, N. N. (2002). Learning Pre-
cise Timing with LSTM Recurrent Networks. Journal
of Machine Learning Research, 3:115–143.
Graves, A. (2008). Supervised sequence labelling with re-
current neural networks. PhD thesis.
Graves, A. and Gomez, F. (2006). Connectionist temporal
classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd International Conference on Machine Learning.
Graves, A., Liwicki, M., Bunke, H., Santiago, F., and
Schmidhuber, J. (2008). Unconstrained on-line hand-
writing recognition with recurrent neural networks.
Advances in Neural Information Processing Systems,
20:1–8.
Graves, A., Liwicki, M., Fern
´
andez, S., Bertolami, R.,
Bunke, H., and Schmidhuber, J. (2009). A novel
connectionist system for unconstrained handwriting
recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(5):855–68.
Grosicki, E. and Abed, H. E. (2009). ICDAR 2009 Hand-
writing Recognition Competition. In 10th Interational
Conference on Document Analysis and Recognition,
pages 1398–1402.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Knerr, S., Anisimov, V., Barret, O., Gorski, N., Price, D.,
and Simon, J. (1997). The A2iA intercheque sys-
tem: courtesy amount and legal amount recognition
for French checks. International journal of pattern
recognition and artificial intelligence, 11(4):505–548.
Kundu, A., He, Y., and Bahl, P. (1988). Recognition
of handwritten word: first and second order hidden
Markov model based approach. Computer Vision and
Pattern Recognition, 22(3):457–462.
Lee, A., Kawahara, T., and Shikano, K. (2001). Julius an
Open Source Real-Time Large Vocabulary Recogni-
tion Engine. In Eurospeech, pages 1691–1694.
Menasri, F., Louradour, J., Bianne-Bernard, A., and Ker-
morvant, C. (2012). The A2iA French handwriting
recognition system at the Rimes-ICDAR2011 compe-
tition. Society of Photo-Optical Instrumentation En-
gineers, 8297:51.
Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glem-
bek, O., Goel, N., Hannemann, M., Motlicek, P., Qian,
Y., Schwarz, P., Silovsky, J., Stemmer, G., and Vesely,
K. (2011). The kaldi speech recognition toolkit. In
IEEE workshop on Automatic Speech Recognition and
Understanding, pages 1–4.
Rabiner, L. (1989). A tutorial on hidden Markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257–286.
Vincent, P., Larochelle, H., Yoshua, B., and Manzagol,
P. A. (2008). Extracting and composing robust fea-
tures with denoising autoencoders. In Proceedings of
the Twenty-fifth International Conference on Machine
Learning, number July, pages 1096–1103.
Vinciarelli, A. (2002). A survey on off-line cursive word
recognition. Pattern recognition, 35(7):1433–1446.
Vinciarelli, A. and Luettin, J. (2001). A new normaliza-
tion technique for cursive handwritten words. Pattern
Recognition Letters, 22(9):1043–1050.
Werbos, P. J. (1990). Backpropagation through time: What
it does and how to do it. Proceedings of the IEEE,
78(10):1550—-1560.
Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D.,
Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev,
V., and Woodland, P. (2006). The HTK book.
ICPRAM2015-InternationalConferenceonPatternRecognitionApplicationsandMethods
180