Hasan, M. M., Sharmeen, S., Rahman, M. A., Ali, M. A.,
and Kabir, M. H. (2012). Block based image segmen-
tation. Advances in Communication, Network, and
Computing, 108:15–24.
Howlader, N., Noone, A. M., Krapcho, M., Garshell, J.,
Neyman, N., Altekruse, S., Kosary, C., Yu, M., Ruhl,
J., Tatalovich, Z., Cho, A., Mariotto, H., Lewis, D.,
Chen, H., Feuer, E., and Cronin, K. (2013). Seer can-
cer statistics review,1975-2010, national cancer insti-
tute. http://seer.cancer.gov/csr/1975 2010/. Accessed
16-October-2013.
Ito, H., Kamoi, K., Yokoyama, K., Yamada, K., and
Nishimura, T. (2003). Visualization of prostate can-
cer using dynamic contrast-enhanced mri: compari-
son with transrectal power doppler ultrasound. British
Journal of Radiology, 76(909):617–624.
Kim, K. C., Park, B. K., and Kim., B. (2006). Localiza-
tion of prostate cancer using 3t mri: comparison of
t2-weighted and dynamic contrast-enhanced imaging.
J Comput Assist Tomogr, 30:7–11.
Litjens, G. J. S., Vos, P. C., Barentsz, J. O., Karssemeijer,
N., and Huisman, H. J. (2011). Automatic computer
aided detection of abnormalities in multi-parametric
prostate mri. In Proc.SPIE 7963, Medical Imaging
2011: Computer-Aided Diagnosis. SPIE.
Llobet, R., Juan, C., Cortes, P., Juan, A., and Toselli, A.
(2007). computer-aided detection of prostate can-
cer. International Journal of Medical Informatics,
76(7):547–556.
Miao, H., Fukatsu, H., and Ishigaki, T. (2007). Prostate
cancer detection with 3-t mri: comparison of diffu-
sionweighted and t2-weighted imaging. Eur J Radiol,
61:297–302.
Mohamed, S., El-Saadany, E. F., Abdel-Galil, T., Shen, J.,
Salama, M. M. A., Fenster, A., Downey, D. B., and
Rizkalla, K. (2003). Region of interest identification
in prostate trus images based on gabor filter. In IEEE
46th Midwest Symposium on Circuits and Systems,
volume 1, pages 415–419.
Niaf, E., Rouviere, O., Mege-Lechevallier, F., Bratan, F.,
and Lartizien, C. (2012). Computer-aided diagnosis
of prostate cancer in the peripheral zone using multi-
parametric mri. Phys Med Biol, 57:3833–3851.
Ocak, I., Bernardo, M., Metzger, G., Barrett, T., Pinto, P.,
Albert, P. S., and Choyke, P. L. (2007). Dynamic
contrast-enhanced mri of prostate cancer at 3 t: a study
of pharmacokinetic parameters. American Journal of
Roentgenology, 189(4):W192–W201.
PCUK (2014). Prostate cancer key facts.
http://www.cancerresearchuk.org/cancer-
info/spotcancerearly. Accessed 15-April-2014.
Rampun, A., Malcolm, P., and Zwiggelaar, R. (2013). De-
tection and localisation of prostate abnormalities. In
3rd Computational and Mathematical Biomedical En-
gineering (CMBE’13), pages 204–208.
Rampun, A., Malcolm, P., and Zwiggelaar, R. (2014a).
Computer aided diagnosis method for mri-guided
prostate biopsy within the peripheral zone using grey
level histograms. In 7th International Conference on
Machine Vision (ICMV’14).
Rampun, A., Malcolm, P., and Zwiggelaar, R. (2014b).
Detection and localisation of prostate cancer within
the peripheral zone using scoring algorithm. In 16th
Irish Machine Vision and Image Processing Confer-
ence (IMVIP’14).
Rampun, A., Malcolm, P., and Zwiggelaar, R. (2014c).
Detection of prostate abnormality within the periph-
eral zone using local peak information. In 3rd Inter-
national Conference on Pattern Recognition Applica-
tions and Methods (ICPRAM’14). SCITEPRESS.
Rubner, Y., Tomasi, C., and Guibas., L. J. (2000). The earth
movers distance as a metric for image retrieval. Inter-
national Journal of Computer Vision, 40(2):99–121.
Schlemmer, H. P., Merkle, J., and Grobholz, R. (2004). Can
preoperative contrast-enhanced dynamic mr imaging
for prostate cancer predict microvessel density in
prostatectomy specimens? Eur Radiol, 14:309–317.
Shimofusa, R., Fujimoto, H., Akamata, H., Motoori, K., Ya-
mamoto, S., Ueda, T., and Ito, H. (2005). Diffusion-
weighted imaging of prostate cancer. J Comput Assist
Tomogr, 29:149–153.
Sung, Y. S., Kwon, H.-J., Park, B. W., Cho, G., Lee,
C. K., Cho, K.-S., and Kim, J. K. (2011). Prostate
cancer detection on dynamic contrast-enhanced mri:
Computer-aided diagnosis versus single perfusion pa-
rameter maps. American Journal of Roentgenology,
197(5):1122–1129.
Tabesh, A., Teverovskiy, M., Pang, H. Y., Kumar, V. P.,
Verbel, D., Kotsianti, A., and Saidi, O. (2007). Mul-
tifeature prostate cancer diagnosis and gleason grad-
ing of histological images. IEEE Trans. Med. Imag.,
26(10):1366–1378.
Taneja, S. S. (2004). Imaging in the diagnosis and man-
agement of prostate cancer. Reviews in Urology,
6(3):101–113.
Tiwari, P., Kurhanewicz, J., Rosen, M., and Madabhushi, A.
(2010). Semi supervised multi kernel (sesmik) graph
embedding: identifying aggressive prostate cancer via
magnetic resonance imaging and spectroscopy. In
Medical Image Computing and Computer-Assisted In-
tervention MICCAI. Springer.
Vos, P. C., Hambrock, T., Barentsz, J., and Huisman, H.
(2010). Computer-assisted analysis of peripheral zone
prostate lesions using t2-weighted and dynamic con-
trast enhanced t1-weighted mri. Physics in Medicine
and Biology, 55:1719–1734.
Yu, K. K. and Hricak, H. (2000). Imaging prostate cancer.
Radiol Clin North Am, 38(1):59–85.
ABlock-basedApproachforMalignancyDetectionwithintheProstatePeripheralZoneinT2-weightedMRI
63