Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal
Imaging; Servier; Synarc Inc.; and Takeda
Pharmaceutical Company are all funders of ADNI.
ADNI clinical sites in Canada are supported and
funded by the Canadian Institutes of Health
Research. Private sector contributions are facilitated
by the Foundation for the National Institutes of
Health (www.fnih.org). The grantee organization is
the Northern California Institute for Research and
Education, and the study is coordinated by the
Alzheimer's Disease Cooperative Study at the
University of California, San Diego. ADNI data are
disseminated by the Laboratory for Neuro Imaging
at the University of Southern California.
Authors also acknowledge the support of the
European Commission through the project
MAESTRA - Learning from Massive, Incompletely
annotated, and Structured Data (Grant number ICT-
2013-612944).
REFERENCES
Accomazzi V., Lazarowich R., Barlow, C. J., and Davey,
B., 2009. U.S. Patent No. 7,596,267. Washington, DC:
U.S. Patent and Trademark Office.
Agarwal M., and Mostafa J., 2010 Image Retrieval for
Alzheimer’s Disease Detection. Medical Content-
Based Retrieval for Clinical Decision Support.
Springer Berlin Heidelberg. pp. 49-60.
Agarwal, M., and Mostafa, J., 2011 Content-based image
retrieval for Alzheimer's disease detection. In Content-
Based Multimedia Indexing (CBMI), 2011 9th
International Workshop on pp: 13-18.
Akgül, C. B., Ünay, D., and Ekin, A., 2009. Automated
diagnosis of Alzheimer's disease using image
similarity and user feedback. In Proceedings of the
ACM International Conference on Image and Video
Retrieval, pp. 34.
Akgül C. B., Rubin, D. L., Napel, S., Beaulieu, C. F.,
Greenspan, H., Acar, B., 2011. Content-based image
retrieval in radiology: current status and future
directions. Journal of Digital Imaging, vol. 24 no. 2,
pp. 208-222.
Cataldo R, Agrusti A, De Nunzio G, Carlà A, De Mitri I,
Favetta M, Quarta M, Monno L, Rei L, Fiorina E;
Alzheimer’s Disease Neuroimaging Initiative, 2013.
Generating a minimal set of templates for the
hippocampal region in MR neuroimages. Journal of
Neuroimaging 23, no. 3 pp. 473-483.
Chupin M., Gérardin E., Cuingnet R., Boutet C, Lemieux
L., Lehéricy S., Benali H., Garnero L., and Colliot O.,
2009a. Fully automatic hippocampus segmentation
and classification in Alzheimer's disease and mild
cognitive impairment applied on data from ADNI.
Hippo-campus 19, no. 6 pp: 579-587.
Chupin A., Hammer A., Liu R.S., Colliot O., Burdett J.,
Bardinet E., Duncan J.S., Garnero L., Lemieux L.,
2009b. Automatic segmentation of the hippocampus
and the amygdala driven by hybrid constraints:
method and validation. Neuroimage. vol. 46, no.
3:749–761.
Cuingnet R., Gerardin E., Tessieras J., Auzias G.,
Lehéricy S., Habert M. O., Chupin M., Benali H., and
Colliot O., 2011. Automatic classification of patients
with Alzheimer's disease from structural MRI: a
comparison of ten methods using the ADNI database.
Neuroimage 56, no. 2 pp. 766-781.
Depeursinge, A., Zrimec, T., Busayarat, S., Müller, H.,
2011. 3D lung image retrieval using localized features.
In SPIE Medical Imaging, International Society for
Optics and Photonics, pp. 79632E-79632E.
FreeSurfer, 2013. Available from: <https://surfer.nmr.
mgh.harvard.edu/>. [25.08.2014]
FreeSurfer methods, 2014. Available from: <http://surfer.
nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitati
on>. [25.08.2014].
Gerardin E, Gaël C., Marie C., Rémi C., Béatrice D., Ho-
Sung K., Marc N. et al., 2009. Multidimensional
classification of hippocampal shape features
discriminates Alzheimer's disease and mild cognitive
impairment from normal aging. Neuroimage 47, no. 4,
pp. 1476-1486.
Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A.,
and Rueckert, D., 2013. Random forest-based
similarity measures for multi-modal classification of
Alzheimer's disease. NeuroImage, 65, pp: 167-175.
Hall, M. A., & Holmes, G., 2003. Benchmarking attribute
selection techniques for discrete class data mining.
Knowledge and Data Engineering, IEEE Transactions
on, 15(6), 1437-1447.
Heckemann R. A., Keihaninejad S, Aljabar P., Gray K. R.,
Nielsen C, Rueckert D., Hajnal J. V., and Hammers A,
2011. Automatic morphometry in Alzheimer's disease
and mild cognitive impairment." Neuroimage 56, no. 4
p.: 024-2037.
Leonardo I., 2011. Atrophy Measurement Biomarkers
using Structural MRI for Alzheimer’s Disease. The
15th Int. Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI).
Liu, S., Cai, W., Song, Y., Pujol, S., Kikinis, R., & Feng,
D., 2013. A Bag of Semantic Words Model for
Medical Content-based Retrieval. In MICCAI
Workshop on Medical Content-Based Retrieval for
Clinical Decision Support.
Lötjönen, J. M., Wolz, R., Koikkalainen, J. R., Thurfjell,
L., Waldemar, G., Soininen, H., and Rueckert, D.,
2010. Fast and robust multi-atlas segmentation of
brain magnetic resonance images. Neuroimage, vol.
49, no. 3, 2352-2365.
Lötjönen J., Robin W., Juha K., Valtteri J., Lennart T.,
Roger L., Gunhild W., Hilkka S., and Daniel R., 2011
Fast and robust extraction of hippocampus from MR
images for diagnostics of Alzheimer's disease.
Neuroimage 56, no. 1, pp. 185-196.
Mizotin, M., Benois-Pineau, J., Allard, M., and Catheline,
ContentBasedRetrievalofMRIBasedonBrainStructureChangesinAlzheimer'sDisease
21