cation domain by optimising parameters assigned to
different dimensions of the feature space and kernel
function. Its promising performance has been proven
in a meaningful experimental set-up. In the future, we
will investigate possibilities of fusing more meaning-
ful shape features into our feature space.
ACKNOWLEDGEMENTS
Research activities leading to this work have been
supported by the China Scholarship Council (CSC)
and the German Research Foundation within the Re-
search Training Group 1564 (GRK 1564). We greatly
thank M.Sc. Chen Li from University of Siegen and
Prof. Dr. Beihai Zhou and M.Sc. Fangshu Ma from
the University of Science and Technology Beijing for
providing us with Environmental Microorganism im-
age dataset for experiments.
REFERENCES
Bai, X. and Latecki, L. (2008). Path similarity skeleton
graph matching. PAMI, 30(7):1282–1292.
Bai, X., Latecki, L., and yu Liu, W. (2007). Skeleton prun-
ing by contour partitioning with discrete curve evolu-
tion. PAMI, 29(3):449–462.
Bai, X., Liu, W., and Tu, Z. (2009). Integrating contour and
skeleton for shape classification. In ICCV Workshops,
pages 360–367.
Bai, X., Yang, X., Latecki, L., Liu, W., and Tu, Z. (2010).
Learning context-sensitive shape similarity by graph
transduction. PAMI, 32(5):861–874.
Baseski, E., Erdem, A., and Tari, S. (2009). Dissimilar-
ity between two skeletal trees in a context. Pattern
Recognition, 42(3):370–385.
Belongie, S., Malik, J., and Puzicha, J. (2002). Shape
matching and object recognition using shape contexts.
PAMI, 24(4):509–522.
Cao, Y., Zhang, Z., Czogiel, I., Dryden, I., and Wang,
S. (2011). 2d nonrigid partial shape matching us-
ing mcmc and contour subdivision. In CVPR, pages
2345–2352.
Chang, M.-C. and Kimia, B. (2009). Measuring 3d shape
similarity by matching the medial scaffolds. In ICCV,
pages 1473–1480.
Del Bimbo, A. and Pala, P. (1997). Visual image retrieval by
elastic matching of user sketches. PAMI, 19(2):121–
132.
Donoser, M. and Bischof, H. (2013). Diffusion processes
for retrieval revisited. In CVPR, pages 1320–1327.
Goh, W.-B. (2008). Strategies for shape matching using
skeletons. CVIU, 110(3):326–345.
Hazewinkel, M. (2001). Chi-squared Distribution. Ency-
clopedia of Mathematics, Springer.
Hedrich, J., Yang, C., Feinen, C., Schaefer, S., Paulus, D.,
and Grzegorzek, M. (2013). Extended investigations
on skeleton graph matching for object recognition. In
ICCRS, pages 371–381. Springer LNCS.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing. Science, pages
671–680.
Li, C., Shirahama, K., Grzegorzek, M., Ma, F., and Zhou,
B. (2013). Classification of environmental microor-
ganisms in microscopic images using shape features
and support vector machines. In ICIP, pages 2435–
2439. IEEE Computer Society.
Ling, H. and Jacobs, D. (2007). Shape classification using
the inner-distance. PAMI, 29(2):286–299.
Mmoli, F. (2007). On the use of gromov-hausdorff distances
for shape comparison. In SPBG, pages 81–90.
Nguyen, D. T., Ogunbona, P. O., and Li, W. (2013). A
novel shape-based non-redundant local binary pattern
descriptor for object detection. Pattern Recognition,
46(5):1485–1500.
Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall Press, 3rd edition.
Sebastian, T. and Kimia, B. (2001). Curves vs skeletons in
object recognition. In ICIP, volume 3, pages 22–25.
Shotton, J., Blake, A., and Cipolla, R. (2005). Contour-
based learning for object detection. In ICCV, vol-
ume 1, pages 503–510.
Siddiqi, K., Shokoufandeh, A., Dickenson, S., and Zucker,
S. (1998). Shock graphs and shape matching. In
ICCV, pages 222–229.
Sun, K. and Super, B. (2005). Classification of contour
shapes using class segment sets. In CVPR 2005, vol-
ume 2, pages 727–733.
Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. Int. J. Comput. Vision, 57(2):137–154.
Yang, C., Li, C., Tiebe, O., Shirahama, K., and Grzegorzek,
M. (2014a). Shape-based classification of environ-
mental microorganisms. In ICPR, pages 3374–3379.
Yang, C., Tiebe, O., Pietsch, P., Feinen, C., Kelter, U., and
Grzegorzek, M. (2014b). Shape-based object retrieval
by contour segment matching. In ICIP, pages 2202–
2206.
Yang, X., Liu, H., and Latecki, L. J. (2012). Contour-based
object detection as dominant set computation. Pattern
Recognition, 45(5):1927–1936.
Zhang, D. and Lu, G. (2004). Review of shape representa-
tion and description techniques. Pattern Recognition,
37:1–19.
Shape-basedObjectRetrievalandClassificationwithSupervisedOptimisation
211