Alfonseca, E., Filippova, K., Delort, J.-Y., and Garrido, G.
(2012). Pattern learning for relation extraction with a
hierarchical topic model. In Proc. of ACL (2), pages
54–59.
Appelt, D. E. and Israel, D. J. (1999). Introduction to infor-
mation extraction technology. A tutorial prepared for
IJCAI-99.
Banko, M. and Etzioni, O. (2008). The Tradeoffs Between
Open and Traditional Relation Extraction. In Proc. of
ACL/HLT, pages 28–36.
Bollacker, K. D., Evans, C., Paritosh, P., Sturge, T., and
Taylor, J. (2008). Freebase: a collaboratively created
graph database for structuring human knowledge. In
Proc. of SIGMOD, pages 1247–1250.
Bond, F. and Kyonghee, P. (2012). A survey of wordnets and
their licenses. In Proceedings of the 6th International
Global WordNet Conference, pages 64–71.
Bunescu, R. C. and Mooney, R. J. (2005). A Shortest Path
Dependency Kernel for Relation Extraction. In Proc.
of HLT, pages 724–731.
Chowdhury, M. F. M. and Lavelli, A. (2012). Combining
tree structures, flat features and patterns for biomedical
relation extraction. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL ’12, pages 420–429,
Stroudsburg, PA, USA. Association for Computational
Linguistics.
Etzioni, O., Fader, A., Christensen, J., Soderland, S., and
Mausam (2011). Open Information Extraction: The
Second Generation. In Proc. of IJCAI, page 310.
Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying
Relations for Open Information Extraction. In Proc. of
EMNLP, page 15351545.
Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. MIT Press.
Grishman, R. and Sundheim, B. (1996). Message under-
standing conference - 6: A brief history. In Proc. of
the 16th International Conference on Computational
Linguistics, Copenhagen.
Grishman, R., Westbrook, D., and Meyers, A. (2005). Nyu’s
english ace 2005 system description. Technical re-
port, Proteus Project, Department of Computer Sci-
ence, New York University.
Jean-Louis, L., Besanon, R., Ferret, O., and Durand, A.
(2013). Using Distant Supervision for Extracting Rela-
tions on a Large Scale. In Fred, A., Dietz, J., Liu, K.,
and Filipe, J., editors, Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management, vol-
ume 348 of Communications in Computer and Informa-
tion Science, page 141155. Springer Berlin Heidelberg.
Krause, S., Li, H., Uszkoreit, H., and Xu, F. (2012). Large-
scale learning of relation-extraction rules with distant
supervision from the web. In Proc. of 11th ISWC, Part
I, pages 263–278.
Li, H., Krause, S., Xu, F., Uszkoreit, H., Hummel, R., and
Mironova, V. (2014). Annotating relation mentions in
tabloid press. In Proceedings of the 9th edition of the
Language Resources and Evaluation Conference.
Mausam, Schmitz, M., Soderland, S., Bart, R., and Etzioni,
O. (2012). Open Language Learning for Information
Extraction. In Proc. of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages
523–534, Jeju Island, Korea. Association for Computa-
tional Linguistics.
Min, B., Grishman, R., Wan, L., Wang, C., and Gondek,
D. (2013). Distant supervision for relation extraction
with an incomplete knowledge base. In Proceedings of
NAACL-HLT, pages 777–782.
Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Dis-
tant supervision for relation extraction without labeled
data. In Proc. of ACL/AFNLP, page 10031011.
Moro, A., Li, H., Krause, S., Xu, F., Navigli, R., and Uszko-
reit, H. (2013). Semantic rule filtering for web-scale
relation extraction. In International Semantic Web
Conference (1), pages 347–362.
Moro, A. and Navigli, R. (2013). Integrating syntactic and
semantic analysis into the open information extraction
paradigm. In Proc. of IJCAI, pages 2148–2154.
Moro, A., Raganato, A., and Navigli, R. (2014). Entity
linking meets word sense disambiguation: A unified
approach. Transactions of the Association for Compu-
tational Linguistics, 2:231–244.
Navigli, R. (2009). Word Sense Disambiguation: A survey.
ACM Comput. Surv., 41(2):1–69.
Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The au-
tomatic construction, evaluation and application of a
wide-coverage multilingual semantic network. Artifi-
cial Intelligence, 193:217–250.
Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., K
¨
ubler,
S., Marinov, S., and Marsi, E. (2007). Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.
Ravichandran, D. and Hovy, E. H. (2002). Learning surface
text patterns for a Question Answering System. In
Proc. of ACL, pages 41–47.
Wu, F. and Weld, D. S. (2010). Open information extraction
using wikipedia. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pages 118–127. Association for Computational
Linguistics.
Xu, F., Uszkoreit, H., and Li, H. (2007). A seed-driven
bottom-up machine learning framework for extracting
relations of various complexity. In Proc. of ACL.
Xu, H., Hu, C., and Shen, G. (2009). Discovery of depen-
dency tree patterns for relation extraction. In PACLIC,
pages 851–858.
Xu, Y., Kim, M.-Y., Quinn, K., Goebel, R., and Barbosa, D.
(2013). Open Information Extraction with Tree Ker-
nels. In Proc. of NAACL-HLT, pages 868–877, Atlanta,
Georgia. Association for Computational Linguistics.
Yangarber, R., Grishman, R., and Tapanainen, P. (2000). Au-
tomatic acquisition of domain knowledge for informa-
tion extraction. In Proc. of COLING, pages 940–946.
Zelenko, D., Aone, C., and Richardella, A. (2003). Ker-
nel methods for relation extraction. The Journal of
Machine Learning Research, 3:1083–1106.
ICAART2015-InternationalConferenceonAgentsandArtificialIntelligence
324