solution. Another task for future work would be the
verification of these approaches by using large and
open accessibly database. Reproducibility and veri-
fication of the results these proposals have produced
might support a trend of continuing and expanding re-
search in combining fuzzy logic with biometric recog-
nition.
REFERENCES
Abdolahi, M., Mohamadi, M., and Jafari, M. (2013). Mul-
timodal biometric system fusion using fingerprint and
iris with fuzzy logic. International Journal of Soft
Computing and Engineering, 2(6):504–510.
Azzini, A., Damiani, E., and Marrara, S. (2007). Ensur-
ing the identity of a user in time: a multi-modal fuzzy
approach. In IEEE International Conference on Com-
putational Intelligence for Measurement Systems and
Applications (CIMSA), pages 94–99. IEEE.
Azzini, A., Marrara, S., Sassi, R., and Scotti, F. (2008).
A fuzzy approach to multimodal biometric continu-
ous authentication. Fuzzy Optimization and Decision
Making, 7(3):243–256.
Biswas, S., Ahmad, S., and Molla, M. K. (2007). Speaker
identification using cepstral based features and dis-
crete hidden markov model. In Information and
Communication Technology, 2007. ICICT’07. Inter-
national Conference on, pages 303–306. IEEE.
Chang, K., Bowyer, K. W., Sarkar, S., and Victor, B.
(2003). Comparison and combination of ear and face
images in appearance-based biometrics. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
25(9):1160–1165.
Chen, H., Wu, Z., and Cudr
´
e-Mauroux, P. (2012). Seman-
tic web meets computational intelligence: State of the
art and perspectives [review article]. Computational
Intelligence Magazine, IEEE, 7(2):67–74.
George J, K. and Bo, Y. (2008). Fuzzy sets and fuzzy logic,
theory and applications. -.
Hamid, L. and Ramli, D. (2014). Quality based speaker ver-
ification systems using fuzzy inference fusion scheme.
In International Conference on Communications, Sig-
nal Processing and Computers.
Hasan, M. R., Jamil, M., and Rahman, M. G. R. M. S.
(2004). Speaker identification using mel frequency
cepstral coefficients. variations, 1:4.
Hong, L., Jain, A. K., and Pankanti, S. (1999). Can multi-
biometrics improve performance? In Proceedings Au-
toID, volume 99, pages 59–64.
Hui, H. P.-S., Meng, H. M., and Mak, M.-W. (2007).
Adaptive weight estimation in multi-biometric verifi-
cation using fuzzy logic decision fusion. In Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, volume 1, pages
I–501. IEEE.
Lau, C. W., Ma, B., Meng, H. M.-L., Moon, Y.-S., and Yam,
Y. (2004). Fuzzy logic decision fusion in a multimodal
biometric system. In INTERSPEECH.
Mendel, J. M. (1995). Fuzzy logic systems for engineering:
a tutorial. Proceedings of the IEEE, 83(3):345–377.
Mondal, S. and Bours, P. (2013). Continuous authentication
using mouse dynamics. In Biometrics Special Inter-
est Group (BIOSIG), 2013 International Conference
of the, pages 1–12. IEEE.
Park, C., Paik, J., Choi, T., Kim, S., Kim, Y., and Namkung,
J. (2006). Multi-modal human verification using
face and speech. In Computer Vision Systems, 2006
ICVS’06. IEEE International Conference on, pages
54–54. IEEE.
Ross, A., Nandakumar, K., and Jain, A. K. (2008). Intro-
duction to multibiometrics. In Handbook of biomet-
rics, pages 271–292. Springer.
Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neu-
ral network-based face detection. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
20(1):23–38.
Samaria, F. and Young, S. (1994). HMM-based architecture
for face identification. Image and vision computing,
12(8):537–543.
Vasuhi, S., Vaidehi, V., Babu, N. N., and Treesa, T. M.
(2010). An efficient multi-modal biometric person au-
thentication system using fuzzy logic. In Advanced
Computing (ICoAC), 2010 Second International Con-
ference on, pages 74–81. IEEE.
Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.
ICPRAM2015-InternationalConferenceonPatternRecognitionApplicationsandMethods
222