ACKNOWLEDGEMENTS
The research leading to these results has received
funding by The Danish Council for Strategic Re-
search through the project Carmen and from the Euro-
pean Community’s Seventh Framework Programme
FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technolo-
gies) under grant agreement no. 270273, Xperience.
REFERENCES
B
¨
ahnisch, C., Stelldinger, P., and K
¨
othe, U. (2009). Fast and
accurate 3D edge detection for surface reconstruction.
In Pattern Recognition, pages 111–120. Springer.
Besl, P. and McKay, N. D. (1992). A method for regis-
tration of 3-d shapes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 14(2):239–256.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Buch, A. G., Jessen, J. B., Kraft, D., Savarimuthu, T. R.,
and Kr
¨
uger, N. (2013a). Extended 3D line segments
from RGB-D data for pose estimation. In Scandina-
vian Conference on Image Analysis (SCIA), pages 54–
65. Springer.
Buch, A. G., Kraft, D., Kamarainen, J.-K., Petersen, H. G.,
and Kruger, N. (2013b). Pose estimation using local
structure-specific shape and appearance context. In
Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, pages 2080–2087.
Canny, J. (1986). A computational approach to edge detec-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, PAMI-8(6):679–698.
Choi, C., Trevor, A. J., and Christensen, H. I. (2013). RGB-
D edge detection and edge-based registration. In In-
telligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pages 1568–1575.
Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model
globally, match locally: Efficient and robust 3D object
recognition. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 998–
1005.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Frome, A., Huber, D., Kolluri, R., B
¨
ulow, T., and Malik, J.
(2004). Recognizing objects in range data using re-
gional point descriptors. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
224–237.
Gumhold, S., Wang, X., and MacLeod, R. (2001). Feature
extraction from point clouds. In Proceedings of 10th
international meshing roundtable, pages 293–305.
Guy, G. and Medioni, G. (1997). Inference of surfaces, 3D
curves, and junctions from sparse, noisy, 3D data. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 19(11):1265–1277.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and
Stuetzle, W. (1992). Surface reconstruction from un-
organized points. In ACM SIGGRAPH Proceedings,
pages 71–78.
Johnson, A. E. and Hebert, M. (1999). Using spin im-
ages for efficient object recognition in cluttered 3D
scenes. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 21(5):433–449.
Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A large-
scale hierarchical multi-view RGB-D object dataset.
In Robotics and Automation (ICRA), 2011 IEEE In-
ternational Conference on, pages 1817–1824.
Mian, A. S., Bennamoun, M., and Owens, R. (2006).
Three-dimensional model-based object recognition
and segmentation in cluttered scenes. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
28(10):1584–1601.
Mikolajczyk, K. and Schmid, C. (2005). A perfor-
mance evaluation of local descriptors. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630.
Monga, O., Deriche, R., and Rocchisani, J.-M. (1991). 3D
edge detection using recursive filtering: application
to scanner images. CVGIP: Image Understanding,
53(1):76–87.
Pauly, M., Gross, M., and Kobbelt, L. P. (2002). Efficient
simplification of point-sampled surfaces. In IEEE
Conference on Visualization, pages 163–170.
Pauly, M., Keiser, R., and Gross, M. (2003). Multi-scale
feature extraction on point-sampled surfaces. Com-
puter Graphics Forum, 22(3):281–289.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (FPFH) for 3D registration. In
Robotics and Automation, 2009. ICRA’09. IEEE In-
ternational Conference on, pages 3212–3217.
Rusu, R. B. and Cousins, S. (2011). 3D is here: Point cloud
library (PCL). In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 1–4.
Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique
signatures of histograms for local surface description.
In European Conference on Computer Vision (ECCV),
pages 356–369.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
340