of treatment for DVT? An update on evidence-based
medicine of treatment for DVT. Seminars in Vascular
Surgery, 23: 182-191.
Favaloro, E., McDonald, D., Lippi, G., 2009. Laboratory
investigations of thrombophilia: the good, the bad and
the ugly. Seminars in Thrombosis and Hemostasis, 35:
695-710.
Freire, L., Roche, A., Mangin, J-F., 2002. What is the best
similarity measure for motion correction in fMRI time
series?. IEEE Transactions on Medical Imaging, 21:
470-484.
Gelfond M., Lifschitz V., 1988. The stable model
semantics for logic programming. In Logic
Programming – Proceedings of the Fifth International
Conference and Symposium, 1070-1080.
Goldhaber, S., 2010. Risk factors for venous
thromboembolism. Journal of the American College of
Cardiology, 56: 1-7.
Haykin, S., 2008. Neural Networks and Learning Machines.
New York: Prentice Hall.
Heit, J., O'Fallon, W., Petterson, T., Lohse, C., Silverstein,
M., Mohr, D., Melton III, L., 2002. Relative impact of
risk factors for deep vein thrombosis and pulmonary
embolism: a population-based study. Archives of
Internal Medicine, 162: 1245-1248.
Hong, T., Hart, K., Soh, L-K, Samal, A., 2014. Using
spatial data support for reducing uncertainty in
geospatial applications. Geoinformatica, 18: 63-92.
Kakas A., Kowalski R. & Toni F., 1998. The role of
abduction in logic programming. In Handbook of
Logic in Artificial Intelligence and Logic
Programming, Volume 5, 235-324.
Hommerson, A., P. Lucas, van Bommel, P., 2008.
Checking the quality of clinical guidelines using
automated reasoning tools. Theory and Practice of
Logic Program, 8: 611-641.
Hunter, G., 1999. Managing uncertainty in GIS. In
Geographical Information Systems, New York: J.
Wiley & Sons, 633-641.
Li, R., Bhanu, B., Ravishankar, C., Kurth, M., Ni, J., 2007.
Uncertain spatial data handling: Modeling, indexing
and query. Computers & Geosciences, 33: 42-61.
Liao, T., 2005. Clustering of time series data - a survey.
Pattern Recognition, 38: 1857-1874.
Liu, Y., Sun, M., 2007. Fuzzy optimization BP neural
network model for pavement performance assessment.
In 2007 IEEE international conference on grey systems
and intelligent services, Nanjing, China, 18-20.
Lucas P., 2003. Quality checking of medical guidelines
through logical abduction. In Proceedings of AI-2003,
Springer: London, 309-321.
Machado J., Abelha A., Novais P., Neves J., 2010. Quality of
service in healthcare units. International Journal of Com-
puter Aided Engineering and Technology, 2: 436-449.
Mendes, R., Kennedy, J., Neves, J., 2004. The Fully Informed
Particle Swarm: Simpler, Maybe Better. IEEE Trans-
actions on Evolutionary Computation, 8: 204-210.
Mondal, R., Nandi, M., Dhibar, T., 2010. Protein C and
Protein S Deficiency Presenting as Deep Venous
Thrombosis. Indian Pediatrics, 47:188-189.
Neves J., 1984. A logic interpreter to handle time and
negation in logic data bases. In Proceedings of the
1984 annual conference of the ACM on the fifth
generation challenge, 50-54.
Neves J., Machado J., Analide C., Abelha A., Brito L.,
2007. The halt condition in genetic programming. In
Progress in Artificial Intelligence – Lecture Notes in
Computer Science, Volume 4874, 160-169.
Pereira L. Anh H., 2009. Evolution prospection. In New
Advances in Intelligent Decision Technologies – Results
of the First KES International Symposium IDT, 51-64.
Pereira, S., Gomes, S., Vicente, H., Ribeiro, J., Abelha, A.,
Novais, P., Machado, J., Neves, J., 2014. An Artificial
Neuronal Network Approach to Diagnosis of Attention
Deficit Hyperactivity Disorder. In Proceedings of 2014
IEEE International Conference on Imaging Systems and
Techniques (IST 2014), Institute of Electrical and
Electronics Engineers, Inc.: New Jersey, 410-415.
Reitsma, P., Rosendaal, F., 2007. Past and future of genetic
research in thrombosis. Journal of Thrombosis and
Haemostasis, 5: 264-269.
Rodrigues, B., Gomes, S., Vicente, H., Abelha, A., Novais, P.,
Machado, J., Neves, J., 2014. Systematic coronary risk
evaluation through artificial neural networks based
systems. In 27th International Conference on Computer
Applications in Industry and Engineering (to appear).
Rosendaal, F., 1999. Venous thrombosis: a multicausal
disease. Lancet, 353: 1167-1173.
Sacher, R. A. 1999. Thrombophilia: a Genetic Predisposition
to Thrombosis. Transactions of the American Clinical
and Climatological Association, 110: 51-61.
Salvador, C., Martins, M.R., Vicente, H., Neves, J.,
Arteiro J., Caldeira, A.T., 2013. Modelling Molecular
and Inorganic Data of Amanita ponderosa Mushrooms
using Artificial Neural Networks. Agroforestry Systems,
87: 295-302.
Schneider, M., 1999. Uncertainty management for spatial
data in databases: Fuzzy spatial data types. In Lecture
Notes in Computer Science, Volume 1651, 330-351.
Spiezia, L., Campello, E., Bom, M., Tison, T., Milan, M.,
Simioni, P., Prandoni, P., 2013. ABO blood groups and
the risk of venous thrombosis in patients with inherited
thrombophilia. Blood Transfusion, 11:250-253.
Vicente, H., Dias, S., Fernandes, A., Abelha, A.,
Machado, J., Neves, J., 2012. Prediction of the Quality
of Public Water Supply using Artificial Neural
Networks. Journal of Water Supply: Research and
Technology – AQUA, 61: 446-459.
WHO, 2014. Obesity and overweight. Fact Sheet Number
311, World Health Organization. Accessed August 10,
2014.
Zhang, J., Goodchild, M., 2002. Uncertainty in geographical
information. New York: CRC press.
ThrombophiliaScreening-AnArtificialNeuralNetworkApproach
59